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Summary. In general relativity space-time ends at singularities. The big bang is
considered as the Beginning and the big crunch, the End. However these conclusions
are arrived at by using general relativity in regimes which lie well beyond its physical
domain of validity. Examples where detailed analysis is possible show that these
singularities are naturally resolved by quantum geometry effects. Quantum space-
times can be vastly larger than what Einstein had us believe. These non-trivial
space-time extensions enable us to answer of some long standing questions and
resolve of some puzzles in fundamental physics. Thus, a century after Minkowski’s
revolutionary ideas on the nature of space and time, yet another paradigm shift
appears to await us in the wings.

1.1 Introduction

A hundred years ago Hermann Minkowski fused space and time into a smooth
4-dimensional continuum. Remarkably, this continuum —the Minkowski space-
time— still serves as the arena for all non-gravitational interactions both in
classical and quantum physics. Time is no more absolute. Whereas in New-
tonian physics there is a unique 3-plane through each space-time point rep-
resenting space, now there is a unique cone, spanned by light rays passing
through that point. The constant time plane curls up into a 2 sheeted cone
that separates the region which is causally connected with the point from
the region which is not. This causality dictates the propagation of physical
fields in classical physics, and the commutation relations and uncertainty rela-
tions between field operators in quantum physics. With the demise of absolute
simultaneity, Newtonian ideas are shattered. The world view of physics is dra-
matically altered.

However, as in Newtonian physics, there is still a fixed space-time which
serves as the arena for all of physics. It is the stage on which the drama of evo-
lution unfolds. Actors are particles and fields. The stage constrains what the
actors can do. The Minkowski metric dictates the field equations and restricts
the forms of interaction terms in the action. But the actors cannot influence
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the stage; Minkowskian geometry is immune from change. To incorporate the
gravitational force, however, we had to abandon this cherished paradigm. We
follow Einstein and encode gravity in the very geometry of space-time. Matter
curves space-time. The space-time metric is no longer fixed. There is again a
dramatic paradigm shift. However, we continue to retain one basic feature of
Newtonian and Minkowskian frameworks: space-time is still represented by a
smooth continuum.

This is not uncommon: New paradigms are often created by abandoning
one key feature of the older paradigm but retaining another. But global co-
herence of the description of Nature is a huge burden and such a strategy
often leads to new tensions. For example, to achieve compatibility between
mechanics and Maxwellian electrodynamics, Einstein abandoned absolute si-
multaneity but retained the idea that space and time are fixed, unaffected
by matter. The strategy worked brilliantly. Not only was the new mechanics
compatible with Maxwell’s theory but it led to deep, unforeseen insights. En-
ergy and mass are simply two facets of the same physical attribute, related by
E = mc2; electric and magnetic fields E,B are but two projections of an elec-
tromagnetic field tensor Fab; in a quantum theory of charged particles, each
particle must be accompanied by an anti-particle with opposite charge. How-
ever, the new mechanics flatly contradicted basic tenets of Newton’s theory
of gravitation. To restore coherence of physics, one has to abandon the idea
that space-time is fixed, immune to change. One had to encode gravity into
the very geometry of space-time, thereby making this geometry dynamical.

Now the situation is similar with general relativity itself. Einstein aban-
doned the tenet that geometry is inert and made it a physical entity that
interacts with matter. This deep paradigm shift again leads to unforeseen
consequences that are even more profound. Thanks to this encoding, gen-
eral relativity predicts that the universe began with a big bang; that heavy
stars end their lives through a gravitational collapse to a black hole; that
ripples in the space-time curvature propagate as gravitational waves carrying
energy-momentum. However, general relativity continues to retain the New-
tonian and Minkowskian premise that space-time is a smooth continuum. As
a consequence, new tensions arise.

In Newtonian or Minkowskian physics, a given physical field could become
singular at a space-time point. This generally implied that the field could
not be unambiguously evolved to the future of that point. However, this sin-
gularity had no effect on the global arena. Since the space-time geometry is
unaffected by matter, it remains intact. Other fields could be evolved indefi-
nitely. Trouble was limited to the one field which became ill behaved. However,
because gravity is geometry in general relativity, when the gravitational field
becomes singular, the continuum tares and the space-time itself ends. There
is no more an arena for other fields to live in. All of physics, as we know it,
comes to an abrupt halt. Physical observables associated with both matter
and geometry simply diverge signalling a fundamental flaw in our description
of Nature. This is the new quandary.
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When faced with deep quandaries, one has to carefully analyze the rea-
soning that led to the impasse. Typically the reasoning is flawed, possibly
for subtle reasons. In the present case the culprit is the premise that general
relativity —with its representation of space-time as a smooth continuum—
provides an accurate description of Nature arbitrarily close to the singularity.
For, general relativity completely ignores quantum effects and, over the last
century, we have learned that these effects become important in the physics
of the small. They should in fact be dominant in parts of the universe where
matter densities become enormous. Thus there is no reason to trust the pre-
dictions of general relativity near space-time singularities. Classical physics
of general relativity does come to a halt at the big-bang and the big crunch.
But this is not an indication of what really happens because use of general
relativity near singularities is an extrapolation which has no physical justifica-
tion whatsoever. We need a theory that incorporates not only the dynamical
nature of geometry but also the ramifications of quantum physics. We need a
quantum theory of gravity, a new paradigm.

These considerations suggest that singularities of general relativity are
perhaps the most promising gates to physics beyond Einstein. They provide
a fertile conceptual and technical ground in our search of the new paradigm.
Consider some of the deepest conceptual questions we face today: the issue
of the Beginning and the end End; the arrow of time; and the puzzle of black
hole information loss. Their resolutions hinge on the true nature of singulari-
ties. In my view, considerable amount of contemporary confusion about such
questions arises from our explicit or implicit insistence that singularities of
general relativity are true boundaries of space-time; that we can trust causal
structure all the way to these singularities; that notions such as event horizons
are absolute even though changes in the metric in a Planck scale neighbor-
hood of the singularity can move event horizons dramatically or even make
them disappear altogether [1].

Over the last 2-3 years several classically singular space-times have been
investigated in detail through the lens of loop quantum gravity (LQG) [2, 3, 4].
This is a non-perturbative approach to the unification of general relativity and
quantum physics in which one takes Einstein’s encoding of gravity into geom-
etry seriously and elevates it to the quantum level. One is thus led to build
quantum gravity using quantum Riemannian geometry [5, 6, 7, 8]. Both geom-
etry and matter are dynamical and described quantum mechanically from the
start. In particular, then, there is no background space-time. The kinematical
structure of the theory has been firmly established for some years now. There
are also several interesting and concrete proposals for dynamics (see, in par-
ticular [2, 3, 4, 9]). However, in my view there is still considerable ambiguity
and none of the proposals is fully satisfactory. Nonetheless, over the last 2-3
years, considerable progress could be made by restricting oneself to subcases
where detailed and explicit analysis is possible [10, 11, 12, 13, 14, 15]. These
‘mini’ and ‘midi’ superspaces are well adapted to analyze the deep conceptual
tensions discussed above. For, they consider the most interesting of classically
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singular space-times —Friedman-Robertson-Walker (FRW) universes with the
big bang singularity and black holes with the Schwarzschild-type singularity—
and analyze them in detail using symmetry reduced versions of loop quantum
gravity. In all cases studied so far, classical singularities are naturally resolved
and the quantum space-time is vastly larger than what general relativity had
us believe. As a result, there is a new paradigm to analyze the old questions.

The purpose of this article is to summarize these developments, empha-
sizing the conceptual aspects1 from an angle that, I hope, will interest not
only physicists but especially philosophers and historians of science. We will
see that some of the long standing questions can be directly answered, some
lose their force in the new paradigm while others have to be rephrased.

This chapter is organized as follows. In section 1.2 I will discuss cosmo-
logical singularities and in 1.3 the black hole singularities. In each case I will
discuss examples of fundamental open issues and explain their status in the
corresponding models. We will see that quantum geometry has unexpected
ramifications that either resolve or significantly alter the status of these is-
sues. Finally in section 1.4 I will summarize the outlook and discuss some of
the fresh challenges that the new paradigm creates.

1.2 Quantum Nature of the Big Bang

1.2.1 Issue of the Beginning and the End

Over the history of mankind, cosmological paradigms have evolved in inter-
esting ways. It is illuminating to begin with a long range historical perspective
by recalling paradigms that seemed obvious and most natural for centuries
only to be superseded by radical shifts.

Treatise on Time, the Beginning and the End date back at least twenty five
centuries. Does the flow of time have an objective, universal meaning beyond
human perception? Or, is it fundamentally only a convenient, and perhaps
merely psychological, notion? Did the physical universe have a finite beginning
or has it been evolving eternally? Leading thinkers across cultures meditated
on these issues and arrived at definite but strikingly different answers. For
example, in the sixth century BCE, Gautama Buddha taught that ‘a period
of time’ is a purely conventional notion, time and space exist only in relation
to our experience, and the universe is eternal. In the Christian thought, by
contrast, the universe had a finite beginning and there was debate whether
time represents ‘movement’ of bodies or if it flows only in the soul. In the
fourth century CE, St. Augustine held that time itself started with the world.

Founding fathers of modern Science from Galileo to Newton continued
to accept that God created the universe. Nonetheless, their work led to a
1 Thus I will not include any derivations but instead provide references where the

details can be found.
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radical change of paradigm. Before Newton, boundaries between the absolute
and the relative, the true and the apparent and the mathematical and the
common were blurry. Newton rescued time from the psychological and the
material world and made it objective and absolute. It now ran uniformly
from the infinite past to the infinite future. This paradigm became a dogma
over centuries. Philosophers often used it to argue that the universe itself had
to be eternal. For, as Immanuel Kant emphasized, otherwise one could ask
“what was there before?”

General relativity toppled this Newtonian paradigm in one fell swoop. Now
the gravitational field is encoded in space-time geometry. Since geometry is
a dynamical, physical entity, it is now perfectly feasible for the universe to
have had a finite beginning —the big-bang— at which not only matter but
space-time itself is born. If space is compact, matter as well as space-time end
in the big-crunch singularity. In this respect, general relativity took us back
to St. Augustine’s paradigm but in a detailed, specific and mathematically
precise form. In semi-popular articles and radio shows, relativists now like to
emphasize that the question “what was there before?” is rendered meaningless
because the notions of ‘before’ requires a pre-existing space-time geometry. We
now have a new paradigm, a new dogma: In the Beginning there was the Big
Bang.

But as I pointed out in section 1.1, general relativity is incomplete and
there is no reason to trust its predictions near space-time singularities. We
must fuse it with quantum physics and let the new theory tell us what happens
when matter and geometry enter the Planck regime.

1.2.2 Some key questions

If the smooth continuum of Minkowski and Einstein is only an approximation,
on the issue of the origin of the universe we are now led to ask:

• How close to the big-bang does a smooth space-time of general relativity
make sense? Inflationary scenarios, for example, are based on a space-time
continuum. Can one show from some first principles that this is a safe
approximation already at the onset of inflation?

• Is the big-bang singularity naturally resolved by quantum gravity? This
possibility led to the development of the field of quantum cosmology in
the late 1960s. The basic idea can be illustrated using an analogy to the
theory of the hydrogen atom. In classical electrodynamics the ground state
energy of this system is unbounded below. Quantum physics intervenes
and, thanks to a non-zero Planck’s constant, the ground state energy is
lifted to a finite value, −me4/2~2 ≈ −13.6eV. Since it is the Heisenberg
uncertainly principle that lies at the heart of this resolution and since
the principle must feature also in quantum gravity, one is led to ask: Can
a similar mechanism resolve the big-bang and big crunch singularities of
general relativity?
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• Is a new principle/ boundary condition at the big bang or the big crunch
essential? The most well known example of such a boundary condition is
the ‘no boundary proposal’ of Hartle and Hawking [16]. Or, do quantum
Einstein equations suffice by themselves even at the classical singularities?

• Do quantum dynamical equations remain well-behaved even at these sin-
gularities? If so, do they continue to provide a deterministic evolution? The
idea that there was a pre-big-bang branch to our universe has been advo-
cated in several approaches, most notably by the pre-big-bang scenario in
string theory [17] and ekpyrotic and cyclic models [18, 19] inspired by the
brane world ideas. However, these are perturbative treatments which re-
quire a smooth continuum in the background. Therefore, their dynamical
equations break down at the singularity whence, without additional input,
the pre-big-bang branch is not joined to the current post-big-bang branch
by a deterministic evolution. Can one improve on this situation?

• If there is a deterministic evolution, what is on the ‘other side’? Is there
just a quantum foam from which the current post-big-bang branch is born,
say a ‘Planck time after the putative big-bang’? Or, was there another
classical universe as in the pre-big-bang and cyclic scenarios, joined to
ours by deterministic equations?

Clearly, to answer such questions we cannot start by assuming that there
is a smooth space-time in the background. But already in the classical theory,
it took physicists several decades to truly appreciate the dynamical nature
of geometry and to learn to do physics without recourse to a background. In
quantum gravity, this issue becomes even more vexing.2

For simple systems, including Minkowskian field theories, the Hamiltonian
formulation generally serves as the royal road to quantum theory. It was there-
fore adopted for quantum gravity by Dirac, Bergmann, Wheeler and others.
But absence of a background metric implies that the Hamiltonian dynamics
is generated by constraints [21]. In the quantum theory, physical states are
solutions to quantum constraints. All of physics, including the dynamical con-
tent of the theory, has to be extracted from these solutions. But there is no
external time to phrase questions about evolution. Therefore we are led to
ask:

• Can we extract, from the arguments of the wave function, one variable
which can serve as emergent time with respect to which the other argu-
ments ‘evolve’? If not, how does one interpret the framework? What are the
physical (i.e., Dirac) observables? In a pioneering work, DeWitt proposed
that the determinant of the 3-metric can be used as an ‘internal’ time [22].
Consequently, in much of the literature on the Wheeler-DeWitt (WDW )
approach to quantum cosmology, the scale factor is assumed to play the

2 There is a significant body of literature on issue; see e.g., [20] and references
therein. These difficulties are now being discussed also in the string theory liter-
ature in the context of the AdS/CFT conjecture.
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role of time, although sometimes only implicitly. However, in closed models
the scale factor fails to be monotonic due to classical recollapse and cannot
serve as a global time variable already in the classical theory. Are there
better alternatives at least in the simple setting of quantum cosmology? If
not, can we still make physical predictions?

Finally there is an ultraviolet-infrared tension.

• Can one construct a framework that cures the short-distance difficulties
faced by the classical theory near singularities, while maintaining an agree-
ment with it at large scales?

By their very construction, perturbative and effective descriptions have no
problem with the second requirement. However, physically their implications
can not be trusted at the Planck scale and mathematically they generally fail
to provide a deterministic evolution across the putative singularity. Since the
non-perturbative approaches often start from deeper ideas, it is conceivable
that they could lead to new structures at the Planck scale which modify the
classical dynamics and resolve the big-bang singularity. But once unleashed,
do these new quantum effects naturally ‘turn-off’ sufficiently fast, away from
the Planck regime? The universe has had some 14 billion years to evolve since
the putative big bang and even minutest quantum corrections could accumu-
late over this huge time period leading to observable departures from dynamics
predicted by general relativity. Thus, the challenge to quantum gravity theo-
ries is to first create huge quantum effects that are capable of overwhelming
the extreme gravitational attraction produced by matter densities of some
10105 gms/cc near the big bang, and then switching them off with extreme
rapidity as the matter density falls below this Planck scale. This is a huge
burden!

These questions are not new; some of them were posed already in the late
sixties by quantum gravity pioneers such as Peter Bergmann, Bryce DeWitt,
Charles Misner and John Wheeler [21, 22, 23]. However, the field reached an
impasse in the late eighties. Fortunately, this status-quo changed significantly
over the last decade with a dramatic inflow of new ideas from many directions.
In the next two subsections, I will summarize the current status of these issues
in loop quantum cosmology.

1.2.3 FRW models and the WDW theory

Almost all phenomenological work in cosmology is based on the k=0 homo-
geneous and isotropic Friedmann Robertson Walker (FRW) space-times and
perturbations thereof. For concreteness, I will focus on FRW model in which
the only matter source is a scalar massless field.3 I will consider k=0 (or

3 Our discussion will make it clear that it is relatively straightforward to allow
additional fields, possibly with complicated potentials.
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Fig. 1.1. a) Classical solutions in k=0, Λ = 0 FRW models with a massless scalar
field. Since p(φ) is a constant of motion, a classical trajectory can be plotted in the
v-φ plane, where v is the volume (essentially in Planck units). There are two classes
of trajectories. In one the universe begins with a big-bang and expands and in the
other it contracts into a big crunch. b) Classical solutions in the k=1, Λ = 0 FRW
model with a massless scalar field. The universe begins with a big bang, expands
to a maximum volume and then undergoes a recollapse to a big crunch singularity.
Since the volume is double valued in any solution, it cannot serve as a global time
coordinate in this case. The scalar field on the other hand does so both in the k=0
and k=1 cases.

spatially flat) as well as k=1 (spatially closed) models with or without a cos-
mological constant (of either sign). Conceptually, these models are interesting
for our purpose because every of their classical solutions has a singularity (see
Fig 1.1). Therefore a natural singularity resolution without external inputs is
highly non-trivial. In light of the spectacular observational inputs over the
past decade, the k=0 model is the one that is phenomenologically most rele-
vant. However as we will see, because of its classical recollapse, the k=1 model
offers a more stringent viability test for the quantum cosmology.

In the classical theory, one considers one space-time at a time and al-
though the metric of that space-time is dynamical, it enables one to introduce
time coordinates that have direct physical significance. However in the quan-
tum theory —and indeed already in the phase space framework that serves
as the stepping stone to quantum theory— we have to consider all possible
homogeneous, isotropic space-times. In this setting one can introduce a nat-
ural foliation of the 4-manifold each leaf of which serves as the ‘home’ to a
spatially homogeneous 3-geometry. However, unlike in non-gravitational theo-
ries, there is no preferred physical time variable to define evolution. A natural
strategy is to use part of the system as an ‘internal’ clock with respect to
which the rest of the system evolves. This leads one to Leibnitz’s relational
time. Now, in any spatially homogeneous model with a massless scalar field φ,
the conjugate momentum p(φ) is a constant of motion, whence φ is monotonic
along any dynamical trajectory. Thus, in the classical theory, it serves as a
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global clock (see Fig 1.1). Questions about evolution can thus be phrased as:
“If the curvature or matter density or an anisotropy parameter is such and
such when φ = φ1 what is it when φ = φ2?” What is the situation in the
quantum theory? There is no a priori guarantee that a variable which serves
as a viable time parameter in the classical theory will continue to do so in
the quantum theory. Whether it does so depends on the form of the Hamil-
tonian constraint. For instance as Fig 1.1a shows, in the k=0 model without
a cosmological constant, volume (or the scale factor) is a global clock along
any classical trajectory. But the form of the quantum Hamiltonian constraint
[24] in loop quantum gravity is such that it does not serve this role in the
quantum theory. The scalar field, on the other hand, continues to do so (also
in the k=1 case and with or without a cosmological constant).4

Because of the assumption of spatial homogeneity, in quantum cosmology
one has only a finite number of degrees of freedom. Therefore, although the
conceptual problems of quantum gravity remain, there are no field theoretical
infinities and one can hope to mimic ordinary text book quantum mechanics
to pass to quantum theory.

However, in the k=0 case, because space is infinite, homogeneity implies
that the action, the symplectic structure and Hamiltonians all diverge since
they are represented as integrals over all of space. Therefore, in any approach
to quantum cosmology —irrespective of whether it is based on path integrals
or canonical methods— one has to introduce an elementary cell C and restrict
all integrals to it. In actual calculations, it is generally convenient also to
introduce a fiducial 3-metric oqab (as well as frames oea

i adapted to the spatial
isometries) and represent the physical metric qab via a scale factor a, qab =
a2 oqab. Then the geometrical dynamical variable can be taken to be either a,
or the oriented volume v of the fiducial cell C as measured by the physical
frame ea

i , where v is positive if ea
i has the same orientation as oea

i and negative
if the orientations are opposite. (In either case the physical volume of the cell
is |v|.) In this chapter I will use v rather than the scale factor. Note, however,
physical results cannot depend on the choice of the fiducial C or oqab.5 In
the k=1 case, since space is compact, a fiducial cell is unnecessary and the
dynamical variable v is then just the physical volume of the universe.
4 If there is no massless scalar field, one could still use a suitable matter field

as a ‘local’ internal clock. For instance in the inflationary scenario, because of
the presence of the potential the inflaton is not monotonic even along classical
trajectories. But it is possible to divide dynamics into ‘epochs’ and use the inflaton
as a clock locally, i.e., within each epoch [25]. There is considerable literature on
the issue of internal time for model constrained systems [20] (such as a system
of two harmonic oscillators where the total energy is constrained to be constant
[26]).

5 This may appear as an obvious requirement but unfortunately it is often over-
looked in the literature. The claimed physical results often depend on the choice
of C and/or oqab although the dependence is often hidden by setting the volume
vo of C with respect to oqab to 1 (in unspecified units) in the classical theory.
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With this caveat out of the way, one can proceed with quantization. Situa-
tion in the WDW theory can be summarized as follows. This theory emerged
in the late sixties and was analyzed extensively over the next decade and
a half [21]. Many of the key physical ideas of quantum cosmology were in-
troduced during this period [22, 23] and a number of models were analyzed.
However, since a mathematically coherent approach to quantization of full
general relativity did not exist, there were no guiding principles for the anal-
ysis of these simpler, symmetry reduced systems. Rather, quantization was
carried out following ‘obvious’ methods from ordinary quantum mechanics.
Thus, in quantum kinematics, states were represented by square integrable
wave functions Ψ(v, φ), where v represents geometry and φ, matter; and oper-
ators v̂, φ̂ acted by multiplication and their conjugate momenta by (−i~ times)
differentiation. With these choices The Hamiltonian constraint takes the form
of a differential equation that must be satisfied by the physical states[27]:

∂2
φΨ(v, φ) = ΘoΨ(v, φ) := −12πG (v∂v)2 Ψ(v, φ) (1.1)

for k=0, and

∂2
φΨ(v, φ) = −Θ1Ψ(v, φ) := −ΘoΨ(v, φ)−GC |v| 43 Ψ(v, φ) , (1.2)

for k=1, where C is a numerical constant. In what follows Θ will stand for
either Θo or Θ1. In the older literature, the emphasis was on finding and
interpreting the WKB solutions of these equations (see, e.g., [28]). However,
near the singularity, the WKB approximation fails and we need an exact
quantum theory.

The exact theory can be readily constructed [24, 27]. Note first that the
form of (1.1) and (1.2) is the same as that of a Klein-Gordon equation in a
2-dimensional static space-time (with a φ-independent potential in the k=1
case), where φ plays the role of time and v of space. This suggests that we
think of φ as the relational time variable with respect to which v, the ‘true’
degree of freedom, evolves. A systematic procedure based on the so-called
group averaging method [29] (which is applicable for a very large class of
constrained systems) then leads us to the physical inner product between
these states. Not surprisingly it coincides with the expression from the Klein-
Gordon theory in static space-times.

The physical sector of the final theory can be summarized as follows. The
physical Hilbert space Hphy in the k=0 and k=1 cases consists of ‘positive
frequency’ solutions to (1.1) and (1.2) respectively. A complete set of observ-
ables is provided by the momentum p̂(φ) and the relational observable ˆ|v||φ
representing the volume at the ‘instant of time φ’:

p̂(φ) = −i~∂φ and V̂ |φ = eiΘ (φ−φo) |v| e−iΘ (φ−φo) (1.3)

There are Dirac observables because their action preserves the space of so-
lutions to the constraints and are self-adjoint on the physical Hilbert space
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Fig. 1.2. Expectation values (and dispersions) of |v̂|φ for the WDW wave function
in the k=1 model. The WDW wave function follows the classical trajectory into
the big-bang and big-crunch singularities. (In this simulation, the parameters were:
p?

φ = 5000, and ∆pφ/p?
φ = 0.02.)

Hphy. With the exact quantum theory at hand, we can ask if the singularities
are naturally resolved. More precisely, from p̂(φ) and V̂ |φ we can construct
observables corresponding to matter density ρ̂ (or space-time scalar curvature
R̂). Since the singularity is characterized by divergence of these quantities in
the classical theory, in the quantum theory we can proceed as follows. We can
select a point (vo, φo) at a ‘late time’ φo on a classical trajectory of Fig 1.1
—e.g., now, in he history of our universe— when the density and curvature
are very low compared to the Planck scale, and construct a semi-classical
state which is sharply peaked at vo at φ = φo. We can then evolve this state
backward in time. Does it follow the classical trajectory? To have the correct
‘infra-red’ behavior, it must, until the density and curvature become very high.
What happens in this ‘ultra-violet’ regime? Does the quantum state remain
semi-classical and follow the classical trajectory into the big bang? Or, does
it spread out making quantum fluctuations so large that although the quan-
tum evolution does not break down, there is no reasonable notion of classical
geometry? Or, does it remain peaked on some trajectory which however is
so different from the classical one that, in this backward evolution, the the
universe ‘bounces’ rather than being crushed into the singularity? Or, does it
... Each of these scenarios provides a distinct prediction for the ultra-violet
behavior and therefore for physics in the deep Planck regime.6

6 Sometimes apparently weaker notions of singularity resolution are discussed. Con-
sider two examples [30]. One may be able to show that the wave function vanishes
at points of the classically singular regions of the configuration space. However,
if the physical inner product is non-local in this configuration space —as the
group averaging procedure often implies— such a behavior of the wave function
would not imply that the probability of finding the universe at these configura-
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It turns out that the WDW theory leads to similar predictions in both k=0
and k=1 cases [24, 27, 31]. They pass the infra-red tests with flying colors (see
Fig 1.2). But unfortunately the state follows the classical trajectory into the
big bang (and in the k=1 case also the big crunch) singularity. Thus the first
of the possibilities listed above is realized. The singularity is not resolved
because expectation values of density and curvature continue to diverge in
epochs when their classical counterparts do. The analogy to the hydrogen
atom discussed in section 1.2.2 fails to be realized.

1.2.4 Loop quantum cosmology: New quantum mechanics

For a number of years, the failure of the WDW theory to naturally resolve
the big bang singularity was taken to mean that quantum cosmology cannot,
by itself, shed any light on the quantum nature of the big bang. Indeed, for
systems with a finite number of degrees of freedom we have the von Neumann
uniqueness theorem which guarantees that quantum kinematics is unique. The
only freedom we have is in factor ordering and this was deemed insufficient
to alter the status-quo provided by the WDW theory.

The situation changed dramatically in LQG. Here, a well established, rig-
orous kinematical framework is available for full general relativity [5, 2, 3, 4].
If one mimics it in symmetry reduced models, one is led to a quantum theory
which is inequivalent to that of the WDW theory already at the kinematic level.
Quantum dynamics built in this new arena agrees with the WDW theory in
‘tame’ situations but differs dramatically in the Planck regime, leading to a
natural resolution of the big bang singularity.

But what about the von Neumann uniqueness theorem? The theorem
states that 1-parameter groups U(λ) and V (µ) satisfying the Weyl commuta-
tion relations7 admit (up to isomorphism) a unique irreducible representation
by unitary operators on a Hilbert space H in which U(λ) and V (µ) are weakly
continuous in the parameters λ and µ. By Stone’s theorem, weak continuity
is the necessary and sufficient condition for H to admit self adjoint opera-
tors x̂, p̂ such that U(λ) = eiλx̂ and V (µ) = eiµp̂. Therefore assumption of
the von Neumann theorem are natural in non-relativistic quantum mechanics
and we are led to a unique quantum kinematics. However, in full loop quan-
tum gravity, x is analogous to the gravitational connection and U(λ) to its
holonomy. One can again construct an abstract algebra using holonomies and
operators conjugate to connections and ask for its representations satisfying

tions is zero. The second example is that the wave function may become highly
non-classical. This by itself would not mean that the singularity is avoided unless
one can show that the expectation values of a family of Dirac observables which
become classically singular remain finite there.

7 These are: U(λV (λ) = eiλµV (µ)U(λ) and can be obtained by setting U(λ) = eiλx̂

and V (µ) = eiµp̂ in the standard Schrödinger theory. Given a representation U(λ)
is said to be weakly continuous in λ if its matrix elements between any two fixed
quantum states are continuous in λ.
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natural assumptions the most important of which is the diffeomorphism in-
variance dictated by background independence. There is again a uniqueness
theorem [32]. However, in the representation that is thus singled out, holon-
omy operators —analogs of U(λ)— fails to be weakly continuous whence there
are no operators corresponding to connections! Furthermore, a number of key
features of the theory —such as the emergence of a quantum Riemannian
geometry in which there is fundamental discreteness— can be traced back
to this unforeseen feature. Therefore, upon symmetry reduction, although we
have a finite number of degrees of freedom, it would be incorrect to just mimic
Schröddinger quantum mechanics and impose weak continuity. When this as-
sumption is dropped, the von Neumann theorem is no longer applicable and
we have new quantum mechanics [33].

Thus, the key difference between LQC and the WDW theory lies in the fact
that while one does not have reliable quantum kinematics in the WDW theory,
there is a well developed and rigorous framework in LQG which, furthermore,
is unique! If we mimic it as closely as possible in the symmetry reduced the-
ories, we are led to a new kinematic arena, distinct from the one used in the
WDW quantum cosmology. LQC is based on this arena.

1.2.5 LQC: Dynamics

It turns out WDW dynamics is not supported by the new arena because, when
translated in terms of gravitational connections and their conjugate momenta,
it requires that there be an operator corresponding to the connection itself.
Therefore one has to develop quantum dynamics ab-initio on the new arena.
The result is that the differential operator Θo = −12πG (v∂v)2 in Eqs (1.1)
and (1.2) is now replaced by a second order difference operator in v, where
the step size is dictated by the ‘area gap’ of LQG, i.e., the lowest non-zero
eigenvalue of the area operator in LQG. There is a precise sense in which the
Wheeler-DeWitt equations result as the limits of LQC equations when the
area gap is taken to zero, i.e., when the Planck scale discreteness of quan-
tum geometry determined by LQG is neglected. We will now see that this
discreteness is completely negligible at late times but plays a crucial role in
the Planck scale geometry near singularities.

The LQC dynamics has been analyzed using three different methods.

• Numerical solutions of the exact quantum equations [34, 24, 27, 31]. A
great deal of effort was spent in ensuring that the results are free of ar-
tifacts of simulations, do not depend on the details of how semi-classical
states are constructed and hold for a wide range of parameters.

• Effective equations [35, 27, 31]. These are differential equations which in-
clude the leading quantum corrections. The asymptotic series from which
these contributions were picked was constructed rigorously but is based on
assumptions whose validity has not been established. Nonetheless the effec-
tive equations approximate the exact numerical evolution of semi-classical
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states extremely well.

• Exactly soluble, but simplified model in the k=0 case [36, 37]. The sim-
plification is well controlled [37]. This analysis has provided some results
which provide an analytical understanding of numerical results and also
several other results which are not restricted to states which are semi-
classical at late times. In this sense the analysis shows that the overall
picture is robust within these models.

I will provide a global picture that has emerged from these investigations,
first for the k=1 model without the cosmological constant Λ and for the k=0
case for various values of Λ.

Recall that in classical general relativity, the k=1 closed universes start
out with a big bang, expand to a maximum volume Vmax and then recol-
lapse to a big-crunch singularity. Consider a classical solution in which Vmax

is astronomically large —i.e., on which the constant of motion p(φ) takes a
large value p?

(φ)— and consider a time φo at which the volume v? of the uni-
verse is also large. Then there are well-defined procedures to construct states
Ψ(v, φ) in the physical Hilbert space which are sharply peaked at these values
of observables p̂(φ) and V̂φo

at the ‘time’ φo. Thus, at ‘time’ φo, the quantum
universe is well approximated by the classical one. What happens to such
quantum states under evolution? As emphasized earlier, there are infra-red
and ultra-violet challenges:
i) Does the state remain peaked on the classical trajectory in the low curvature
regime? Or, do quantum geometry effects accumulate over the cosmological
time scales, causing noticeable deviations from classical general relativity? In
particular, is there a recollapse and if so does the value Vmax of maximum
volume agree with that predicted by general relativity [38]?
ii) What is the behavior of the quantum state in the Planck regime? Is the
big-bang singularity resolved? What about the big-crunch? If they are both
resolved, what is on the ‘other side’?

Numerical simulations show that the wave functions do remain sharply
peaked on classical trajectories in the low curvature region also in LQC. But
there is a radical departure from the WDW results in the strong curvature
region. The WDW evolution follows classical dynamics all the way into the
big-bang and big crunch singularities (see Fig 1.2). In LQC, by contrast, the big
bang and the big crunch singularities are resolved and replaced by big-bounces
(see Fig 1.3). In these calculations, the required notion of semi-classicality
turns out to be surprisingly weak: these results hold even for universes with
amax ≈ 23`Pl and the ‘sharply peaked’ property improves greatly as amax

grows.
More precisely, numerical solutions have shown that the situation is as

follows. (For details, see [31].)
• The trajectory defined by the expectation values of the physical observ-

able V̂ |φ in the full quantum theory is in good agreement with the trajectory
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Fig. 1.3. In the LQC evolution of models under consideration, the big bang and
big crunch singularities are replaced by quantum bounces. Expectation values and
dispersion of |v̂|φ, are compared with the classical trajectory and the trajectory from
effective Friedmann dynamics. The classical trajectory deviates significantly from
the quantum evolution at Planck scale and evolves into singularities. The effective
trajectory provides an excellent approximation to quantum evolution at all scales.
a) The k=0 case. In the backward evolution, the quantum evolution follows our post
big-bang branch at low densities and curvatures but undergoes a quantum bounce
at matter density ρ ∼ 0.82ρPL and joins on to the classical trajectory that was
contracting to the future. b) The k=1 case. The quantum bounce occurs again at
ρ ∼ 0.82ρPl. Since the big bang and the big crunch singularities are resolved the
evolution undergoes cycles. In this simulation p?

(φ) = 5 × 103, ∆p(φ)/p?
(φ) = 0.018,

and v? = 5× 104.

defined by the classical Friedmann dynamics until the energy density ρ in
the matter field is about two percent of the Planck density. In the classical
solution, scalar curvature and the matter energy density keep increasing on
further evolution, eventually leading to a big bang (respectively, big crunch)
singularity in the backward (respectively, forward) evolution, where v → 0.
The situation is very different with quantum evolution. As the density and
curvature increases further, quantum geometry effects become dominant cre-
ating an effective repulsive force which rises very quickly, overwhelms classical
gravitational attraction, and causes a bounce at ρ ∼ 0.82ρPl, thereby resolv-
ing the past (or the big bang) and future (or the big crunch) singularities.
There is thus a cyclic scenario depicted in Fig 1.3.

• The volume of the universe takes its minimum value Vmin at the bounce
point. Vmin scales linearly with p(φ): 8

Vmin =
(4πGγ2∆

3
) 1

2 p(φ) ≈ (1.28× 10−33 cm) p(φ) (1.4)

8 Here and in what follows, numerical values are given in the classical units G =
c = 1. In these units p(φ) has the same physical dimensions as ~ and the numerical
value of ~ is 2.5× 10−66cm2.
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Consequently, Vmin can be much larger than the Planck size. Consider for ex-
ample a quantum state describing a universe which attains a maximum radius
of a megaparsec. Then the quantum bounce occurs when the volume reaches
the value Vmin ≈ 5.7× 1016 cm3, some 10115 times the Planck volume. Devia-
tions from the classical behavior are triggered when the density or curvature
reaches the Planck scale. The volume can be very large and is not the relevant
scale for quantum gravity effects.

• After the quantum bounce the energy density of the universe decreases
and the repulsive force dies quickly when matter density reduces to about
two percept of the Planck density. The quantum evolution is then well-
approximated by the classical trajectory. On subsequent evolution, the uni-
verse recollapses both in classical and quantum theory at the value V = Vmax

when energy density reaches a minimum value ρmin. Vmax scales as the 3/2-
power of p(φ):

Vmax = (16πG/3`2o)
3/4 p

3/2
(φ) ≈ 0.6 p

3/2
(φ) (1.5)

Quantum corrections to the classical Friedmann formula ρmin = 3/8πGa2
max

are of the order O(`Pl/amax)4. For a universe with amax = 23`Pl, the correction
is only one part in 105. For universes which grow to macroscopic sizes, classical
general relativity is essentially exact near the recollapse.

• Using ideas from geometrical quantum mechanics [39], one can ob-
tain certain effective classical equations which incorporate the leading quan-
tum corrections [35, 31]. While the classical Friedmann equation is (ȧ/a)2 =
(8πG/3) (ρ− 3/8πGa2), the effective equation turns out to be

(
ȧ

a

)2

= 8πG
3 (ρ− ρ1(v))

[
f(v)− ρ

ρcrit

]
(1.6)

where ρ1 and f are specific functions of v with ρ1 ∼ 3/8πGa2. Bounces occur
when ȧ vanishes, i.e. at the value of v at which the matter density equals ρ1(v)
or f(v) = ρ/ρcrit. The first root ρ(v) = ρ1(v) corresponds to the classical
recollapse while the second root, f(v) = ρ/ρcrit, to the quantum bounce.
Away from the Planck regime, f ≈ 1 and ρ/ρcrit ≈ 0. Bounces occur when
ȧ vanishes, i.e. at the value of v at which the matter density equals ρ1(v) or
ρ2(v).

• For quantum states under discussion, the density ρmax is well approxi-
mated by ρcrit ≈ 0.82ρPl up to terms O(`2Pl/a2

min), independently of the details
of the state and values of p(φ). (For a universe with maximum radius of a mega-
parsec, `2Pl/a2

min ≈ 10−76.) The density ρmin at the recollapse point also agrees
with the value (3/8πGa2

max) predicted by the classical evolution to terms of
the order O(`4Pl/a4

max). Furthermore the scale factor amax at which recollapse
occurs in the quantum theory agrees to a very good precision with the one
predicted by the classical dynamics.

• The trajectory obtained from effective Friedmann dynamics is in ex-
cellent agreement with quantum dynamics throughout the evolution. In par-
ticular, the maximum and the minimum energy densities predicted by the
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effective description agree with the corresponding expectation values of the
density operator ρ̂ ≡ ̂p2

(φ)/2|p|3 computed numerically.
• The state remains sharply peaked for a very large number of ‘cycles’.

Consider the example of a semi-classical state with an almost equal relative
dispersion in p(φ) and |v|φ and peaked at a large classical universe of the size
of a megaparsec. When evolved, it remains sharply peaked with relative dis-
persion in |v|φ of the order of 10−6 even after 1050 cycles of contraction and
expansion! Any given quantum state eventually ceases to be sharply peaked
in |v|φ (although it continues to be sharply peaked in the constant of motion
p(φ)). Nonetheless, the quantum evolution continues to be deterministic and
well-defined for an infinite number of cycles. This is in sharp contrast with
the classical theory where the equations break down at singularities and there
is no deterministic evolution from one cycle to the next.

This concludes the summary of our discussion of the k=1 model. An analo-
gous detailed analysis has been carried out also in the k=0 model, again with
a free massless scalar field [34, 24, 27, 37]. In this case, if the cosmological
constant Λ vanishes, as Fig 1.1 shows, classical solutions are of two types,
those which start out at the big-bang and expand out to infinity and those
which start out with large volume and contract to the big crunch singularity.
Again, in this case while the WDW solution follows the classical trajectories
into singularities, the LQC solutions exhibit a big bounce. The LQC dynamics
is again faithfully reproduced by an effective equation: the Friedmann equa-
tion (ȧ/a)2 = (8πG ρ/3) is replaced just by (ȧ/a)2 = (8πGρ/3) (1− ρ/ρcrit).
The quantum correction ρ/ρcrit is completely negligible even at the onset of
the standard inflationary era. Quantum bounce occurs at ρ = ρcrit and the
critical density is again given by ρcrit ≈ 0.82ρPl. Furthermore, one can show
that the spectrum of the density operator on the physical Hilbert space admits
a finite upper bound ρsup. By plugging values of constants in the analytical
expression of this bound, one finds ρsup = ρcrit! If Λ > 0, there are again two
types of classical trajectories but the one which starts out at the big-bang
expands to an infinite volume in finite value φmax of φ. (The other trajectory
is a ‘time reverse’ of this.) Because the φ ‘evolution’ is unitary in LQC, it
yields a natural extension of the classical solution beyond φmax. If Λ < 0, the
classical universe undergoes a recollapse. This is faithfully reproduced by the
LQC evolution. Since both the big-bang and the big-crunch singularities are
resolved, the LQC evolution leads to a cyclic universe as in the k=1 model.
Thus, in all these cases, the principal features of the LQC evolution are robust,
including the value of ρcrit.

Let us summarize the overall situation. In simple cosmological models, all
the questions raised in section 1.2.2 have been answered in LQC in remark-
able detail. The scalar field plays the role of an internal or emergent time and
enables us to interpret the Hamiltonian constraint as an evolution equation.
The matter momentum p̂(φ) and ‘instantaneous’ volumes V̂ |φ form a complete
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set of Dirac observables and enable us to ask physically interesting questions.
Answers to these questions imply that the big bang and the big crunch sin-
gularities are naturally replaced by quantum bounces. On the ‘other side’ of
the bounce there is again a large universe. General relativity is an excellent
approximation to quantum dynamics once the matter density falls below a
couple of percent of the Planck density. Thus, LQC successfully meets both
the ‘ultra-violet’ and ‘infra-red’ challenges. Furthermore results obtained in
a number of models using distinct methods re-enforce one another. One is
therefore led to take at least the qualitative findings seriously: Big bang is not
the Beginning nor the big crunch the End. Quantum space-time appears to
be vastly larger than what general relativity had us believe!

1.3 Black Holes

The idea of black holes is quite old. Already in 1784, in an article in the
Proceedings of the Royal Society John Mitchell used the formula for escape
velocity in Newtonian gravity to argue that light can not escape from a body
of mass M if it is compressed to a radius R = 2GM/c2. He went on to say

if there should exist in nature any [such] bodies .... we could have no
information from sight; yet if any other luminous bodies should happen
to revolve around them we might still perhaps from the motions of
these revolving bodies infer the existence of the central ones with some
degree of probability.

Remarkably, it is precisely observations of this type that have now led us to
the conclusion that there is a 3.4 million solar mass black hole in the center of
our galaxy! In the second volume of Exposition du systèm du Monde published
in 1798, the Marquis de Laplace came to the same conclusion independently
and was more confident of the existence of black holes:

there exist, in the immensity of space, opaque bodies as considerable
in magnitude, and perhaps equally as numerous as stars.

While in many ways these observations are astonishingly prescient, the
underlying reasoning is in fact incorrect. For, if light (which is assumed to
be corpuscular in this argument) from a distant source were to impinge on
such an object, it would bounce back and by Newtonian conservation laws it
would reach the point from which it came. Distant observers should therefore
be able to see these objects. Indeed, if all speeds —including that of light—
are relative as in Newtonian mechanics, there can really be no black holes.
The existence of black holes requires both gravity and an absolute speed of
light; general relativity is essential.
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1.3.1 Horizons

To capture the intuitive notion that black hole is a region from which signals
can not escape to the asymptotic part of space-time, one needs a precise def-
inition of future infinity. The standard strategy is to use Penrose’s conformal
boundary I+ [40]. It is a future boundary: No point of the physical space-
time lies to the future of any point of I+. It has topology S2 × R and it is
null (assuming that the cosmological constant is zero). In Minkowski space-
time, one can think of I+ as the ‘final resting place’ of all future directed
null geodesics. More precisely, the chronological past I−(I+) of I+ is entire
Minkowski space.9

Given a general asymptotically flat space-time (M, gab), one first finds the
chronological past I−(I+) of I+. If it is not the entire space-time, then there
is a region in (M, gab) from which one cannot send causal signals to infinity.
When this happens, one says that the space-time admits a black hole. More
precisely, Black-hole region B of (M, gab) is defined as

B = M − I−(I+) (1.7)

where the right side is the set of points of M which are not in I−(I+). The
boundary ∂B of the black hole region is called the event horizon (EH) and is
denoted by E [41]. I−(I+) is often referred to as the asymptotic region and
e is the boundary of this region within physical space-time.

Event horizons and their properties have provided a precise arena to de-
scribe black holes and their dynamics. In particular, we have the celebrated
result of Hawking’s [42, 41]: assuming energy conditions, the area ahor of
an EH cannot decrease under time evolution. The area ahor is thus analo-
gous to thermodynamic entropy. There are other laws governing black holes
which are in equilibrium (i.e. stationary) and that make transitions to nearby
equilibrium states due to influx of energy and angular momentum. They are
similar to the zeroth and the first law of thermodynamics and suggest that
the surface gravity κ of stationary black holes is the analog of thermodynamic
temperature. These analogies were made quantitative and precise by an even
deeper result Hawking obtained using quantum field theory in a black hole
background [43]: black holes radiate quantum mechanically as though they
are black bodies at temperature T = κ~/2π. Their entropy is then given by
S = ahor/4`2Pl. Not surprisingly these results have led to a rich set of insights
and challenges over the last 35 years.

However, the notion of an EH also has two severe limitations. First, while
the notion neatly captures the idea that asymptotic observers can not ‘look
into’ a black hole, it is too global for many applications. For example, since
9 I−(I+) is the set of all points in the physical space-time from which there is a

future directed time-like curve to a point on I+ in the conformally completed
space-time. The term ‘chronological’ refers to the use of time-like curves. A curve
which is everywhere time-like or null is called ‘causal’.
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Fig. 1.4. a) A Vaidya solution: Collapse of a spherical null fluid to form a black
hole. The null fluid radiation starts at the retarded time v = 0 and ends at v = v0.
Space time is flat in the past of v = 0 and Schwarzschild to the future of v = v0.
The dynamical horizon H starts out space-like and joins on to the null event horizon
at v = v0. The event horizon first forms and grows in the flat part of space-time.
b) Conjectured Penrose diagram of an evaporating black hole: A black hole forms
by stellar collapse and evaporates due to Hawking radiation. Due to back reaction,
the singularity loses its strength as we move right along the wiggly line, and finally
disappears. Nonetheless because there is still a piece of space-like singularity in the
future, I+ does not constitute the full future boundary of space-time, leading to
information loss.

it refers to null infinity, it can not be used in spatially compact space-times.
Asymptotic flatness and the notion of I+ is used also in other contexts, in par-
ticular to discuss gravitational radiation in full, non-linear general relativity
[40]. However, there I+ is used just to facilitate the imposition of boundary
condition and make notions such as ‘1/rn-fall-off’ precise. Situation with EHs
is quite different because they refer to the full chronological past of I+. As a
consequence, by changing the geometry in a small —say Planck scale region—
around the singularity, one can change the EH dramatically and even make it
disappear [1]! As I explained in section 1.1, there is no reason to trust classi-
cal general relativity very close to the singularity. If the singularity is resolved
due to quantum effects, there may be no longer an EH. What then is a black
hole? If the notion continues to be meaningful, can we still associate with it
entropy in absence of an EHs?

The second limitation is that the notion is teleological; it lets us speak of
a black hole only after we have constructed the entire space-time. Thus, for
example, an EH may well be developing in the room you are now sitting in
anticipation of a gravitational collapse that may occur in this region of our
galaxy a million years from now. Indeed, as Fig 1.4a shows, EHs can form and
grow even in flat space-time where there is no influx of matter of radiation.
How can we then attribute direct physical significance to the growth of their
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area? Clearly, when astrophysicists say that they have discovered a black hole
in the center of our galaxy, they are referring to something much more concrete
and quasi-local than an EH.

Over the last five years, quasi-local horizons were introduced to improve
on this situation [44, 45, 46, 47]. The idea is to use the notion of marginally
trapped surfaces. Consider a space-like 2-sphere in Minkowski space and il-
luminate it instantaneously. Then there are two light fronts, one traveling
outside the sphere and expanding continuously and the other traveling inside
and contracting. Now, if the 2-sphere were placed in a strong gravitational
field, both these light fronts could contract. Then light would be trapped and
the sphere would not be visible from outside. These two situations are sepa-
rated by the marginal case where one light front would be contracting and the
area of the other would neither decrease not increase. Such 2-surfaces are said
to be marginally trapped and their world tubes represent quasi-local horizons.
More precisely, a marginally trapped tube (MTT) is a 3-manifold which is
foliated by a family of marginally trapped 2-spheres. If it is space-like, the
area of the marginally trapped surfaces increases to the future and the MTT
is called a dynamical horizon (DH). Heuristically it represents a growing black
hole. If the MTT is null, it is called an isolated horizon (IH) and represents
a black hole in equilibrium. In Fig 1.4a a DH H forms due to gravitational
collapse of infalling null fluid, grows in area with the in-fall and settles down
to an IH which coincides with the future part of the EH E. Note that the
definitions of MTT, DH and IH are all quasi-local. In particular, they are not
teleological; you can be rest assured that none of these quasi-local horizons
exists in the room you are now sitting in!

There is however a significant drawback: lack of uniqueness. Although par-
tial uniqueness results exist [48], in general we cannot yet associate a unique
DH with a generic, growing black hole. But this weakness is compensated in
large measure by the fact that interesting results hold for every DH. In partic-
ular, not only does the direct analog of Hawking’s area theorem hold on DHs,
but there is a precise quantitative relation between the growth of area of a DH
and the amount of energy falling into it [45, 46]. Therefore, in striking con-
trast with EHs, we can associate a direct physical significance to the growth
in area of DHs. This and other quantitative relations have already made DHs
very useful in numerical simulations of black hole formation and mergers [47].
Finally, since they refer only to the space-time geometry in their immedi-
ate vicinity, the existence and properties of these horizons are insensitive to
what happens near the singularity. Thus, quantum gravity modifications in
the space-time geometry in the vicinity of the classical singularity would have
no effect on these horizons.10

10 One might wonder: Don’t the singularity theorems essentially guarantee that if
there is an MTT there must be a singularity? Recall however that the theorems
also assume classical Einstein’s equations and certain energy conditions. Both
these assumptions would be violated in quantum gravity. Therefore, it is per-
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Conceptually these quasi-local horizons are also useful in quantum consid-
erations. Let us first consider equilibrium situations. In loop quantum gravity,
there is a statistical mechanical derivation of the entropy associated with any
isolated horizon [49, 2]. These cover not only the familiar stationary black
holes but also hairy black holes as well as cosmological horizons. Next, con-
sider dynamics. During the collapse, the MTT is space-like and we have a DH.
But once the in-fall of matter ends, the mass of the black hole must decrease
and the horizon area must shrink. In this phase the MTT is time-like and so
there is no obstruction at all for leakage of matter from inside the MTT to
the outside region.

To summarize, black holes were first described using EHs. While this de-
scription has led to important insights, they also have some important limita-
tions in the dynamical context. The more recent quasi-local horizons provide
concepts and tools that are more directly useful both in numerical relativity
and quantum gravity.

1.3.2 Hawking radiation and information loss

Consider a spherically symmetric gravitational collapse depicted in Fig 1.4a.
Once the black hole is formed, space-time develops a new, future boundary at
the singularity, whence one can not reconstruct the geometry and matter fields
by evolving the data backward from future null infinity, I+. Thus, whereas an
appropriately chosen family of observers near I− has full information needed
to construct the entire space-time, no family of observers near I+ has such
complete information. In this sense, black hole formation leads to information
loss. Note that, contrary to the heuristics often invoked, this phenomenon
is not directly related to black hole uniqueness results: it occurs even when
uniqueness theorems fail, as with ‘hairy’ black holes or in presence of matter
rings non-trivially distorting the horizon. The essential ingredient is the future
singularity which can act as the sink of information.

A natural question then is: what happens in quantum gravity? Is there
again a similar information loss? Hawking’s [43] celebrated work of 1974, men-
tioned in section 1.3.1, analyzed this issue in the framework of quantum field
theory in curved space-times. In this approximation, three main assumptions
are made: i) the gravitational field can be treated classically; ii) one can ne-
glect the back-reaction of the spontaneously created matter on the space-time
geometry; and iii) the matter quantum field under investigation is distinct
from the collapsing matter, so one can focus just on spontaneous emission.
Under these assumptions, at late times there is a steady emission of particles
to I+ and the spectrum is thermal at a temperature dictated by the sur-
face gravity of the final black hole. In particular, pure states on I− evolve to
mixed states on I+. However, this external field approximation is too crude;

fectly feasible for MTTs to exist even though the (quantum) space-time has no
singularities.
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in particular it violates energy conservation. To cure this drawback, one can
include back-reaction. A detailed calculation is still not available. However,
following Hawking [43], one argues that, as long as the black hole is large com-
pared to the Planck scale, the quasi-stationary approximation should be valid.
Then, by appealing to energy conservation and the known relation between
the mass and the horizon area of stationary black holes, one concludes that
the area of the EH should steadily decrease.11 This then leads to black hole
evaporation depicted in figure 1.4b [42]. If one does not examine space-time
geometry but uses instead intuition derived from Minkowskian physics, one
may be surprised that although there is no black hole at the end, the initial
pure state has evolved in to a mixed state. Note however that even after the
inclusion of back reaction, in this scenario there is still a final singularity, i.e.,
a final boundary in addition to I+. Therefore, it is not at all surprising that,
in this approximation, information is lost —it is still swallowed by the final
singularity. Thus, provided figure 1.4b is a reasonable approximation of black
hole evaporation and one does not add new input ‘by hand’, then pure states
must evolve in to mixed states.

The question then is to what extent this diagram is a good representation
of the physical situation. The general argument in the relativity community
has been the following. Figure 1.4b should be an excellent representation of
the actual physical situation as long as the black hole is much larger than
the Planck scale. Therefore, problems, if any, are associated only with the
end point of the evaporation process. It is only here that the semi-classical
approximation fails and one needs full quantum gravity. Whatever these ‘end
effects’ are, they deal only with the Planck scale objects and would be too
small to recover the correlations that have been steadily lost as the large black
hole evaporated down to the Planck scale. Hence pure states must evolve to
mixed states and information is lost.

Tight as this argument seems, it overlooks two important considerations.
First, one would hope that quantum theory is free of infinities whence figure
1.4b can not be a good depiction of physics near the entire singularity —
not just near the end point of the evaporation process. Second, as we saw
in section 1.3.1, the EH is a highly global and teleological construct. Since
the structure of the quantum space-time could be very different from that of
figure 1.4b near (and ‘beyond’) the singularity, the causal relations implied
by the presence of the EH of figure 1.4b is likely to be quite misleading [1].
Indeed, using the AdS/CFT conjecture, string theorists have argued that the
evolution must be unitary and information is not lost. However, since the crux
of that argument is based on the boundary theory (which is conjectured to be
equivalent to string theory in the bulk), this line of reasoning does not provide
a direct space-time description of how and why the information is recovered.
Where does the above reasoning of relativists, fail? How must it be corrected?
11 This does not contradict the area law because the energy conditions used in its

derivation are violated by the quantum emission.
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I believe that answer to these question lies in the fact that, because of
singularity resolution, the quantum space-time is larger than the classical [50].
In support of this view, in the next two sections I will use a 2-dimensional black
hole to argue that the loss of information is not inevitable even in space-time
descriptions favored by relativists.

1.3.3 CGHS black holes

Let us begin with the spherical collapse of a massless scalar field f in 4 space-
time dimensions resulting in a black hole. Because of spherical symmetry, it
is convenient to factor out by the 2-spheres of symmetry and pass to the r− t
plane. Let us express the 4-dimensional space-time metric 4gab as:

4gab = gab +
e−2φ

κ2
sab ,

where we have introduced a constant κ with dimensions of inverse length and
set r = e−φ/κ. Then the (symmetry reduced) Einstein Hilbert action becomes

S(g, φ, κ) =
1

2G

∫
d2x

√
|g| [e−2φ (R+2∇aφ∇aφ+2e−2φκ2) +G e−φ∇af∇af

]

(1.8)
where R is the scalar curvature of the 2-metric g. This theory is very rich
especially because the well-known critical phenomena. The classical equations
cannot be solved exactly. However, an apparently small modification of this
action —changes in the bold coefficients (compare (1.8) and (1.9))— gives a 2-
dimensional theory which is exactly soluble classically. There is again a black
hole formed by gravitational collapse and it evaporates by Hawking radiation.
This is the Callen, Giddings, Harvey, Strominger (CGHS) model [51] and it
arose upon symmetry reduction of a low energy action motivated by string
theory. Because it has many of the qualitative features of the 4-d theory but
is technically simpler, the model attracted a great deal of attention in the 90s
(for reviews, see e.g., [52]). Here, the basic fields are again a 2-dimensional
metric g of signature -+, a geometrical scalar field φ, called the dilaton, and
a massless scalar field f . The action is given by:

S(g, φ, f) :=
1

2G

∫
d2x

√
|g| [e−2φ (R+4∇aφ∇aφ+4κ2)+G∇af∇af

]
(1.9)

We will analyze this 2-d theory in its own right.
Recall that imposition of spherical symmetry in 4-d general relativity im-

plies that the gravitational field is completely determined by matter —the
true degrees of freedom are all contained in the matter. The same is true in
the CGHS model. Furthermore, in the CGHS case there is a simplification:
the equation of motion of f is just ¤(g)f = 0; dynamics of f is decoupled
from φ. In 2 dimensions, the physical metric gab is conformally related to a flat
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a) b)

Fig. 1.5. a) A typical solution for the f+ mode in Minkowski space. b) When
interpreted in terms of the physical metric g, a black hole has formed because of
the gravitational collapse of f+. The physical space-time M is a proper subset of
Mo but the subset realized depends on the solution f+. Therefore already in the
classical Hamiltonian theory, the kinematical arena is provided by Mo.

metric gab = Ωηab and conformal invariance of the wave equation implies that
¤(g)f = 0 if and only if ¤(η)f = 0. Therefore, we can fix a fiducial flat metric
η, parameterize g by Ω and determine f by solving the wave equation on the
2-dimensional Minkowski space (Mo, η). Finally, let us set Φ = e−2φ and write
the conformal factor Ω as Ω = Θ−1 Φ. The passage (g, φ, f) −→ (Θ, Φ, f) just
corresponds to a convenient choice of field redefinitions.

Since ¤(η)f = 0, we know f = f+(z+) + f−(z−), where f± are arbitrary
smooth functions of their arguments and z± are the advanced and retarded
coordinates of η (i.e., ηab = −∂(az+ ∂b)z

−). Given f , the equations of motion
for Θ and Φ (together with appropriate boundary conditions) determine the
classical solution completely. To display it, it is simplest to use coordinates
x± given by:

κx+ = eκz+
and κx− = −e−κz− .

Then, for any given f±, the solution is given by

Θ = −κ2x+ x− and

Φ = Θ − G

2
∫ x+

0
dx̄+

∫ x̄+

0
d¯̄x+ (∂f+/∂ ¯̄x+)2 − G

2

∫ x−

0
dx̄−

∫ x̄−

0
d¯̄x− (∂f−/∂ ¯̄x−)2 .

(1.10)

The black hole sector of interest is obtained by setting f− = 0 as in Fig 1.5a
and letting f+ collapse. (Alternatively, one could f+ = 0 and consider the
collapse of f−.)

But why is there a black hole? Fields f+, Θ, Φ are all smooth on the
entire manifold Mo. Recall, however, that the physical metric is given by
gab = Ωηab ≡ Θ−1Φηab. On the entire manifold Mo, Θ is smooth and nowhere
vanishing. However, it is easy to verify that Φ vanishes along a space-like line
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(see Fig 1.5b). On this line gab becomes degenerate and its scalar curvature
diverges. Thus there is a space-like singularity; the physical space-time man-
ifold M on which gab is well defined is only a part of the fiducial Minkowski
manifold Mo (see Fig 1.5b). Is it hidden behind an event horizon? To ask this
question, we should first verify that (M, gab) admits a complete [53] future
null infinity I+ and the past of I+ does not contain the singularity. In 2
space-times dimensions, past as well as future null infinity has two pieces, one
to the right and the other to the left and they are joined only by points i±

at time-like infinity. In the solutions under consideration I+
R is complete but

I+
L is not. Therefore strictly we can meaningfully ask if there is a black hole

only with respect to I+
R and the answer is in the affirmative. Fortunately to

analyze the Hawking radiation and information loss, we can focus just on I+
R .

Before going on to these issues, it is interesting to note that there is a black
hole in spite of the fact that the solution (f, θ, Φ) is perfectly regular. This
is because the physical meaning of the solution has to be analyzed using the
physical geometry determined by g.

Solution (1.10) represents a black hole formed by the gravitational col-
lapse of f+. In the spirit of Hawking’s original derivation, let us study the
dynamics of a test quantum field f̂− on this black hole geometry. Now I− of
every physical metric g coincides with the past null infinity Io− of Minkowski
space (Mo, η) and g = η in a neighborhood of Io−

L . So we can begin with the
vacuum state |0〉− at Io−

L and ask for its dynamical content. In the Heisenberg
picture, the operators evolve and state remain fixed. The issue then is that of
interpretation of the fixed state |0〉− in the geometry given by g in a neighbor-
hood of I+

R . Now, two important factors of the geometry come into play. First,
although the physical metric g is asymptotically flat, it does not agree with
η even at I+

R . More precisely, the affine parameter y− at I+
R is a non-trivial

function of z−, reflecting the fact that the asymptotic time translation of g
does not coincide with any of the asymptotic time translations of η. Therefore
there is a mixing of positive and negative frequency modes. Since |0〉− is de-
fined using z−, it is populated with particles defined at I+

R by g. Second, I+
R

is a proper subset of Io+
R . Therefore, we have to trace over modes of f̂− with

support on Io+
R − I+

R . Therefore, as far as measurements of observables near
I+

R are concerned, the state |0〉− is indistinguishable from a density matrix ρ

on the Hilbert space H of f̂− at I+
R . Detailed calculation shows that at late

times, ρ is precisely the thermal state at temperature ~κ/2π [54]! Thus, in the
CGHS model there is indeed Hawking radiation and therefore, by repeating
the reasoning summarized in section 1.3.2 one can conclude that there must
be information loss.

I will conclude this section by summarizing the similarities and differences
in the 4 and 2 dimensional analyses. In both cases there is a formation of a
black hole due to gravitational collapse and the test quantum field is distinct
from the field that collapses. Thanks to asymptotic flatness at past null in-
finity, the vacuum state |0〉− of the test field is well-defined and the key issue
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is that of its physical interpretation in the physical geometry near future null
infinity. Finally although κ was introduced as a constant in the CGHS theory,
one can verify that it is in fact the surface gravity of the stationary black hole
in the future of the support of f+. In both cases the Hawking temperature
is this given by ~/2π times the surface gravity. However, there are also some
important differences. First, whereas there is just one I− and I+ in 4 dimen-
sions in the CGHS case we have two copies of each and the clear-cut black hole
interpretation holds only with respect to I+

R . Second, while in 4 dimensions κ
and hence the Hawking temperature is inversely proportional to the mass of
the black hole, in the CGHS case it is a constant. Finally, at a technical level,
even in the spherically symmetric reduction of the 4-dimensional theory, the
equation satisfied by the scalar field f is much more complicated than the
CGHS wave equation. Therefore, while analysis of the CGHS black hole does
provide valuable insights for the 4 dimensional case, one cannot take directly
over results.

1.3.4 Quantum geometry

Since the model is integrable classically, many steps in the passage to quan-
tum theory are simplified [15]. Our basic fields will again be f̂ , Θ̂, Φ̂. The true
degree of freedom is in the scalar field f and it satisfies just the wave equation
on Minkowski space (Mo, η). Therefore, it is straightforward to construct the
Fock space F = F+⊗F− and represent f̂± as operator valued distributions on
F . Classically, we have explicit expressions (1.10) of fields Θ and Φ in terms
of f on all of Mo. In quantum theory, because of trace anomaly the equations
satisfied by Θ̂, Φ̂ are more complicated. Therefore explicit solutions are not
available. However, these are hyperbolic equations on the fiducial Minkowski
space and the boundary values at Io− are given by the (unambiguous) oper-
ator versions of (1.10). Therefore, in principle, it should be possible to solve
them. A conjecture based on approximate solutions is that Θ̂ would be an
operator field and Φ̂ an operator valued distribution on F .

At first, may seem surprising that there is no Hilbert space corresponding
to geometry. However, already at the classical level the covariant phase space
can be coordinatized completely by the scalar field f and geometric fields Θ, Φ
are just functionals on this phase space. The situation in quantum theory is
precisely what one would expect upon quantization. While the full quantum
theory is still incomplete in the CGHS model, there is a simpler and interesting
system in which this feature is realized in detail: cylindrical gravitational waves
in 4-dimensional general relativity. This system is equivalent to 2+1 Einstein
gravity coupled to an axi-symmetric scalar field. Again because there are no
gravitational degrees of freedom in 2+1 dimensions, the true degree of freedom
can be encoded in the scalar field which now satisfies a wave equation in a
fiducial 2+1 dimensional Minkowski space. The regulated metric operator is
represented as an operator valued distribution on the Fock space of the scalar
field [55] and leads to interesting and unforeseen quantum effects [56].
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Returning to the CGHS model, we can now ask: What is a quantum black
hole? In the classical theory, black holes result if we specify a smooth profile fo

as initial data for f+ on Io−
R and zero data for f− on Io−

L . In quantum theory,
then, a candidate black hole would a quantum state |Ψ〉 which is peaked at this
classical data on Io−: |Ψ〉 = |0〉−⊗|Co

f 〉+ where |0〉− is the vacuum state in F−
and |Co

f 〉+ is the coherent state in F+ peaked at the classical profile fo of f+.
One can show that if one solves the quantum equations for Θ̂, Φ̂ in a certain
approximation (the 1st step in a certain bootstrapping), then the states Ψ do
emerge as black holes: the expectation values of ĝab, Φ̂ are precisely those of
the classical black hole solutions. In particular, 〈Φ̂〉 vanishes along a space-like
line which appears as the singularity in the classical theory. However, the true
quantum geometry near this classical singularity is perfectly regular [15]: the
operator Φ̂ does not vanish, only its expectation value does. Furthermore, one
can also calculate fluctuations and show that they are small near infinity but
huge near the classical singularity. Consequently, the expectation values are
poor representations of the actual quantum geometry in a neighborhood of the
classical singularity. The fact that the quantum metric ĝab is regular on Mo

already in this approximation suggests that the singularity may be resolved in
the quantum theory making the quantum space-time larger than the classical
one. There is then a possibility that there may be no information loss.

a) b)

Fig. 1.6. a) The CGHS analog of the Penrose diagram 1.4b. This diagram has been
used for a number of years to describe space-time geometry after inclusion of back
reaction. Singularity is still part of the future boundary and so the information is
lost. b) The space-time diagram suggested by the asymptotic analysis of mean field
equations near I+

R . In the quantum space-time I+
R is ‘as long as’ Io+

R , whence |0〉−
is a pure state also with respect to the physical metric g. It is however populated
by particles and resembles thermal density matrix at an intermediate region of I+

R .

This issue is probed using the mean field approximation (MFA) [15]. Here,
one first takes the expectation value of the the quantum equations governing
Θ̂, φ̂ in the state Ψ and, furthermore, replaces Φ, θ by their expectation values.
Thus, for example, 〈Θ̂ Φ̂〉 is replaced by 〈Θ̂〉 〈Φ̂〉 but 〈: (∂f̂)2 :〉 is kept as is.
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This amounts to ignoring the quantum fluctuations in the geometric operators
Θ̂, Φ̂ but not those in the matter field f̂ . This approximation can be justified
in the limit in which there is a large number N of scalar fields f̂ rather than
just one and we restrict ourselves to regions in which “fluctuations in the
geometry are less than N times the fluctuations in any one matter field”. In
this region, the mean field approximation provides a good representation of
the geometry that includes back reaction of the Hawking radiation.

It turns out that the resulting equations on Θ̄ := 〈Θ̂〉 and Φ̄ := 〈Φ̂〉
were already obtained sometime ago using functional integral techniques and
solved numerically [57]. By making appeal to the 4-dimensional theory whose
symmetry reduction gives the CGHS models, one can introduce the notion
of marginally trapped ‘surfaces’ and their ‘area’. Simulations showed that
marginally trapped surfaces do form due to infalling matter, the marginally
trapped tube is first space-like —i.e., is a dynamical horizon— but, after the
inflow of collapsing matter ends, becomes time-like due to the leakage of the
Hawking radiation. Thus the scenario based on quasi-local horizons is realized.
In the dynamical horizon phase, the horizon area ahor increases and in the
subsequent Hawking evaporation, it decreases to zero: It is again the MTT
that evaporates. However, further evolution to the future moves one closer
to what was the classical singularity. As I mentioned above, in this region
the quantum fluctuations in geometry become huge and so the mean field
approximation fails. The simulations cannot be continued further. However,
since the area of the marginally trapped surface shrunk to zero, it was assumed
—as is reasonable— that the Bondi mass at the corresponding retarded instant
of time would be zero on I+

R . Therefore, following what Hawking did in 4-
dimensions, it became customary to attach by hand a ‘corner of Minkowski
space’ to the numerically evolved space-time thereby arriving at a Penrose
diagram of figure 1.6a. Note that in this diagram, the future boundary for the
f̂− modes consists not just of I+

R but also a piece of the singularity. As I argued
in section 1.3.2, if this is an accurate depiction of the physical situation, one
would conclude that |0〉− at Io−

L would evolve to a density matrix on I+
R and

information would indeed be lost.
Note however that the key to the information loss issue lies in the geom-

etry near future infinity and MFA should be valid there. Thus, rather than
attaching a corner of flat space by hand at the end of the numerical simula-
tion, we can use the mean field equations near I+

R and let them tell us what
the structure of I+

R of the physical metric is.
To realize this idea, one has to make three assumptions: i) exact quantum

equations can be solved and the expectation value ḡab of ĝab admits a smooth
right null infinity I+

R which coincides with Io+
R in the distant past (i.e. near

ioR); ii) MFA holds in a neighborhood of I+
R ; and, iii) Flux of quantum

radiation vanishes at some finite value of the affine parameter y− of I+
R defined

by the asymptotic time translation of ḡ. All three assumptions have been
made routinely in the analysis of the information loss issue, although they are
often only implicit. Indeed, one cannot even meaningfully ask if information
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is lost unless the first two hold. (The third assumption can be weakened to
allow the flux to decay sufficiently fast in the future.) Then, a systematic
analysis of the MFA equations shows [15] that the right future null infinity
I+

R of the physical metric ḡ coincides with that of η; I+
R = Io+

R (see Fig
1.6). This implies that to interpret |0〉− at I+

R we no longer have to trace
over any modes; in contrast to the situation encountered in the external field
approximation discussed in section 1.3.3, all modes of f̂− are now accessible
to the asymptotically stationary observers of ḡ. The vacuum state |0〉− of η
is pure also with respect to ḡ. But is it in the asymptotic Fock space of ḡ?
Calculation of Bogoluibov coefficients shows [15] that the answer is in the
affirmative. Thus, the interpretation of |0〉− with respect to ḡ is that it is a
pure state populated by pairs of particles at I+

R . There is neither information
loss nor remnants.

Let us summarize the discussion of CGHS black holes. A key simplifica-
tion in this model is that the matter field satisfies just the wave equation on
(Mo, η

ab). Therefore, given initial data on Io−, we already know the state
everywhere both in the classical and the quantum theory. However, the state
derives its physical interpretation from geometry which is a complicated func-
tional of the matter field. We do not yet know the quantum geometry every-
where. But approximation methods suggest that ĝab is likely to be well-defined
(and nowhere vanishing) everywhere on Mo. By making rather weak assump-
tions on the asymptotic behavior of its expectation value ḡab, one can conclude
that the right future null infinity I+

R of ḡab coincides with Io+
R of ηab and the

affine parameters y− and z− defined by the two metrics are such that the
exact quantum state |0〉− is a pure state in the asymptotic Fock space of ḡab.
The S-matrix is unitary and there is no information loss. Thus the asymptotic
analysis leads us to a Penrose diagram of Fig 1.6b which is significantly dif-
ferent from Fig 1.6a, based on Hawking’s original proposal [43]. In particular,
the quantum space-time does not end at a future singularity and is larger
than that in 1.6a. The singularity is replaced by a genuinely quantum region
in which quantum fluctuations are large and the notion of a smooth metric
tensor field is completely inadequate. However, in contrast to the situation in
quantum cosmology of section 1.2, a full solution to the quantum equations
is still lacking.

1.4 Discussion

In section 1.2 we saw that many of the long standing questions regarding the
big bang have been answered in detail in the FRW cosmologies with a mass-
less scalar field and the results are physically appealing. Main departures from
the WDW theory occur due to quantum geometry effects of LQG. There is
no fine tuning of initial conditions, nor a boundary condition at the singular-
ity, postulated from outside. Also, there is no violation of energy conditions.
Indeed, quantum corrections to the matter Hamiltonian do not play any role
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in the resolution of singularities of these models. The standard singularity
theorems are evaded because the geometrical side of the classical Einstein’s
equations is modified by the quantum geometry corrections of LQC. While
the detailed results presented in section 1.2.5 are valid only for these simplest
models, partial results have been obtained also in more complicated models
indicating that the singularity resolution is rather robust.

In this respect there is a curious similarity with the very discovery of phys-
ical singularities in general relativity. They were first encountered in special
examples. But the examples were also the physically most interesting ones
—e.g., the big-bang and the Schwarzschild curvature singularities. At first it
was thought that these space-times are singular because they are highly sym-
metric. It was widely believed that generic solutions of Einstein’e equations
should be non-singular. As is well-known, this belief was shattered by the
Penrose-Hawking singularity theorems. Some 40 years later we have come to
see that the big bang and the Schwarzschild singularities are in fact resolved
by quantum geometry effects. Is this an artifact of high symmetry? Or, are
there robust singularity resolution theorems lurking just around the corner?

A qualitative picture that emerges is that the non-perturbative quantum
geometry corrections are ‘repulsive’.12 While they are negligible under normal
conditions, they dominate when curvature approaches the Planck scale and
can halt the collapse that would classically have lead to a singularity. In this
respect, there is a curious similarity with the situation in the stellar collapse
where a new repulsive force comes into play when the core approaches a
critical density, halting further collapse and leading to stable white dwarfs
and neutron stars. This force, with its origin in the Fermi-Dirac statistics,
is associated with the quantum nature of matter. However, if the total mass
of the star is larger than, say, 5 solar masses, classical gravity overwhelms
this force. The suggestion from LQC is that a new repulsive force associated
with the quantum nature of geometry comes into play and is strong enough
to counter the classical, gravitational attraction, irrespective of how large the
mass is. It is this force that prevents the formation of singularities. Since it is
negligible until one enters the Planck regime, predictions of classical relativity
on the formation of trapped surfaces, dynamical and isolated horizons would
still hold. But assumptions of the standard singularity theorems would be
violated. There would be no singularities, no abrupt end to space-time where
physics stops. Non-perturbative, background independent quantum physics
would continue.

One can also analyze the CGHS models using LQG [58]. However, I used
the more familiar Fock spaces to illustrate the fact that the basic phenomenon
12 We saw in section 1.2.4 that there is no connection operator in LQG. As a result

the curvature operator has to be expressed in terms of holonomies and becomes
non-local. The repulsive force can be traced back to this non-locality. Heuristically,
the polymer excitations of geometry do not like to be packed too densely; if
brought too close, they repel.
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of singularity resolution by quantum geometry effects is more general. In the
CGHS case the analysis is not as complete as in the cosmological models be-
cause the CGHS model has an infinite number of degrees of freedom. But
results obtained using various approximations strongly suggest that, as in the
cosmological case, quantum space-times are larger than what the classical
theory suggests. However, nature of the quantum space-time is quite different
in the two cases. In the cosmological case the state remains sharply peaked
around a smooth geometry even near the bounce. The expression of the effec-
tive metric which provides an excellent approximation to the exact quantum
state does have an explicit dependence on ~ due to quantum corrections. How-
ever, it is smooth everywhere. In the CGHS model on the other hand quantum
fluctuations in the metric become large in the Planck regime whence one can-
not approximate the quantum geometry by any smooth geometry. Rather,
there is a genuine quantum bridge joining the smooth metric in the distant
past to that in the distant future.

At first one might think that, since quantum gravity effects concern only
a tiny region, whatever quantum effects there may be, their influence on the
global properties of space-time should be negligible whence they would have
almost no bearing on the issue of the Beginning and the End. However, as we
saw, once the singularity is resolved, vast new regions appear on the ‘other
side’ ushering in new possibilities that were totally unforeseen in the realm of
Minkowski and Einstein. Which of them are realized generically? Is there a
manageable classification? If, as in the CGHS case, there are domains in which
geometry is truly quantum, classical causality would be rendered inadequate
to understand the global structure of space-time. Is there a well-defined but
genuinely quantum notion of causality which reduces to the familiar one on
quantum states which are sharply peaked on a classical geometry? Or, do we
just abandon the idea that space-time geometry dictates causality and formu-
late physics primarily in relational terms? There is a plethora of such exciting
challenges. Their scope is vast, they force us to introduce novel concepts and
they lead us to unforeseen territories. These are just the type of omens that
foretell the arrival of a major paradigm shift to take us beyond the space-time
continuum of Minkowski and Einstein.
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K. Kuchař, Canonical methods of quantization. In: Quantum Gravity 2, A Sec-
ond Oxford Symposium, Isham, C. J., Penrose, R., Sciama, D. W. (eds.) (Claren-
don Press, Oxford (1981))

22. B. S. DeWitt (1967): Quantum theory of gravity I. The canonical theory. Phys.
Rev. 160, 1113–1148 (1967).



34 Abhay Ashtekar

23. C. W. Misner, Mixmaster universe. Phys. Rev. Lett. 22, 1071-1074 (1969);
Minisuperspace. In: Magic without Magic: John Archibald Wheeler; a collection
of essays in honor of his sixtieth birthday. (W. H. Freeman, San Francisco (1972)

24. A. Ashtekar, T. Pawlowski and P. Singh, Quantum nature of the big bang: An
analytical and numerical investigation I, Phys. Rev. D73, 124038 (2006)

25. A. Ashtekar, T. Pawlowski and P. Singh, Loop quantum cosmology in the pre-
inflationary epoch (in preparation)

26. C. Rovelli, Quantum mechanics without time: A model, Phys. Rev. D42, 2638
(1990)

27. A. Ashtekar, T. Pawlowski and P. Singh, Quantum nature of the big bang:
Improved dynamics, Phys. Rev. D74, 084003 (2006)

28. C. Kiefer, Wavepsckets in in minisuperspace, Phys. Rev. D38, 1761-1772 (1988)
29. D. Marolf, Refined algebraic quantization: Systems with a single constraint.

arXive:gr-qc/9508015;
Quantum observables and recollapsing dynamics. Class. Quant. Grav. 12, 1199–
1220 (1994);
A. Ashtekar, L. Bombelli and A. Corichi, Semiclassical states for constrained
systems, Phys. Rev. D72, 025008 (2005)

30. A. Kamenshchik, C. Kiefer and B. Sandhofer, Quantum cosmology with big
break singularity, Phys. Rev. D76, 064032 (2007)

31. A. Ashtekar, T. Pawlowski, P. Singh and K. Vandersloot, Loop quantum cos-
mology of k=1 FRW models. Phys. Rev. D75, 0240035 (2006);
L. Szulc, W. Kaminski, J. Lewandowski, Closed FRW model in loop quantum
cosmology. Class. Quant. Grav. 24, 2621–2635 (2006)

32. J. Lewandowski, A. Okolow, H. Sahlmann and T. Thiemann, Uniqueness of dif-
feomorphism invariant states on holonomy flux algebras, Comm. Math. Phys.
267, 703-733 (2006);
C. Fleishchack, Representations of the Weyl algebra in quantum geometry.
arXiv:math-ph/0407006.

33. A. Ashtekar, M. Bojowald and J. Lewandowski, Mathematical structure of loop
quantum cosmology. Adv. Theo. Math. Phys. 7, 233–268 (2003)

34. A. Ashtekar, T. Pawlowski and P. Singh, Quantum nature of the big bang, Phys.
Rev. Lett. 96, 141301 (2006), arXiv:gr-qc/0602086.

35. J. Willis On the low energy ramifications and a mathematical extension of loop
quantum gravity. Ph.D. Dissertation, The Pennsylvaina State University (2004);
A. Ashtekar, M. Bojowald and J. Willis, Corrections to Friedmann equations
induced by quantum geometry, IGPG preprint (2004);
V. Taveras, LQC corrections to the Friedmann equations for a universe with a
free scalar field, IGC preprint (2007)

36. M. Bojowald, Dynamical coherent states and physical solutions of quantum
cosmological bounces, Phys. Rev. D 75, 123512 (2007)

37. A. Ashtekar, A. Corichi and P. Singh, Robustness of predictions of loop quantum
cosmology, Phys. Rev. D77, 024046 (2008)

38. D. Green and W. Unruh (2004): Difficulties with recollapsing models
in closed isotropic loop quantum cosmology. Phys. Rev. D70, 103502;
arXiv:gr-qc/04-0074.

39. A. Ashtekar and T. A. Schilling, Geometrical formulation of quantum mechanics.
In: On Einstein’s Path: Essays in Honor of Engelbert Schücking, Harvey, A. (ed.)
(Springer, New York (1999)), 23–65, arXiv:gr-qc/9706069.



1 Quantum Space-times 35

40. R. Penrose, Zero rest mass fields including gravitation, Proc. R. Soc. (London)
284 159-203 (1965)

41. S. W. Hawking The event horizon in Black holes, DeWitt B S and DeWitt C M
(eds) (North-Holland, Amsterdam (1972))

42. S. W. Hawking, Gravitational radiation from colliding black holes Phys. Rev.
Lett. 26, 1344-1346 (1971)

43. S. W. Hawking, particle creation by black holes, Commun. Math. Phys. 43,
199-220 (1975)

44. A. Ashtekar, C. Beetle, O. Dreyer, S. Fairhurst, B. Krishnan, J. Lewandowski,
and J. Wisniewski, Generic Isolated Horizons and their Applications, Phys. Rev.
Lett. 85, 3564-3567 (2000)

45. A. Ashtekar and B. Krishnan, Dynamical horizons: energy, angular momentum,
fluxes and balance laws Phys. Rev. Lett. 89 261101-261104 (2002)

46. Ashtekar A and Krishnan B Dynamical horizons and their properties, Phys.
Rev. D68 104030-104055 (2003)

47. Ashtekar A and Krishnan B (2004) Isolated and dynamical horizons and their
applications Living Rev. Rel. 10 1-78, gr-qc/0407042

48. A. Ashtekar and G. Galloway, Some uniqueness results for dynamical horizons,
Adv. Theor. Math. Phys. 9 1-30 (2005)

49. A. Ashtekar, J. Baez A. Corichi and K. Krasnov, Quantum Geometry and Black
Hole Entropy, Phys. Rev. Lett. 80 904-907 (1998);
A. Ashtekar, J. Baez and K. Krasnov, Quantum geometry of isolated horizons
and black hole entropy, Adv. Theor. Math. Phys. 4 1-94 (2000);
A. Ashtekar, J. Engle, C. Van Den Broeck, Quantum horizons and black hole
entropy: Inclusion of distortion and rotation, Class. Quant. Grav. 22, L27-L33
(2005)

50. A. Ashtekar and M. Bojowald, Black hole evaporation: A paradigm, Class.
Quant. Grav. 22,(2005) 3349-3362 (2005)

51. C. G. Callen, S. B. Giddings, J. A. Harvey and A. Strominger, Evanescent black
holes, Phys. Rev. D45, R1005-R1010 (1992)

52. S. B. Giddings, Quantum mechanics of black holes, arXiv:hep-th/9412138;
A. Strominger, Les Houches lectures on black holes, arXiv:hep-th/9501071

53. R. Geroch and G. Horowitz, Asymptotically simple does not imply asymptoti-
cally Minkowskian, Phys. Rev. Lett. 40, 203-207 (1978); Erratum: Phys. Rev.
Lett. 40, 483 (1978)

54. S. B. Giddings and W. M. Nelson, Quantum emission from two-dimensional
black holes, Phys. Rev. D46, 2486-2496 (1992)

55. A. Ashtekar and M. Pierri, Probing quantum gravity through exactly soluble
midi-superspaces I, J. Math. Phys. 37, 6250-6270 (1996)

56. A. Ashtekar, Large quantum gravity effects: Unexpected limitations of the clas-
sical theory, Phys.Rev.Lett. 77, 4864-4867 (1996)

57. D. A. Low, Semiclassical approach to black hole evaporation, Phys. Rev. D47,
2446-2453 (1993);
T. Pirqan and A. Strominger, Numerical analysis of black hole evaporation,
Phys. Rev. D48, 4729-4734

58. A. Laddha, Polymer quantization of the CGHS model I, 24, 4969-4988 (2007)
Polymer quantization of the CGHS model II, Class. Quantum Grav. 24, 4989-
5009 (2007)


