Some Comments on Kerr/CFT
and beyond

Finn Larsen
Michigan Center for Theoretical Physics

Penn State University, September 10, 2010
Outline

- **The Big Picture**: extremal limit of general black holes.

- **Microscopics of Kerr/CFT**: proposal for precision counting.

- **AdS$_2$ Quantum Gravity**: Kerr/CFT as the theory of (some) diffeomorphisms.

- Some references:
 K. Hanaki and FL (in progress).
Extremal Black Holes: Overview

- **Setting:**
 Black holes in $D = 4$ SUGRA, single center, asymptotically flat, $N = 8, 4, 2$ theory. Parameters (M, J, Q_I, P^I).

- **Extremal limit:**
 $T_H = 0$.
 There is an AdS_2 factor in geometry.

- Distinguish **3** types of extremal Black Holes:
 i) BPS.
 ii) non-BPS extremal.
 iii) extremal Kerr.
Example 1

- **Theory:** M theory on $CY \times S^1$

- **Black hole:**
 \[M5 \text{ on } P \times S^1 \text{ (} P \text{ a divisor)} \text{ with } P^3 \neq 0 \text{ ("3 charges")} \]
 Momentum = n along S^1 (so 4 charges total)

- Black hole entropy: $S = 2\pi \sqrt{|n| P^3}$

- **Two extremal limits:**
 BPS: $n > 0$. The "fourth" charge break same SUSYs as P.
 non-BPS: $n < 0$. The "fourth" charge break opposite SUSYs so none are left.
Example 2: Kerr-Newman

- **Theory:** Einstein-Maxwell, ”diagonal charges”, $Q^4 \sim n P^3$

- **Black hole: Kerr-Newman**

 Black hole entropy ($G_4 = 1$):

 $$S = 2\pi \left[(M^2 - \frac{1}{2}Q^2) + \sqrt{M^2(M^2 - Q^2) - J^2} \right] = S_L + S_R$$

- **BPS:** $M^2 = Q^2$, $J = 0$, $S = 2\pi \cdot \frac{1}{2} Q^2$

- **Extremal Kerr:** $Q^2 = 0$, $M^4 = J^2$, $S = 2\pi |J|$

- **BPS and Kerr both correspond to R in a specific state, L carries entropy**
The Big Picture

The *general* black hole — with parameters: \((M, J, Q_I, P^I)\) — is described by a 2D CFT with L and R chiralities that interact weakly:

\[
S = S_L + S_R, \quad \beta_H = \frac{1}{2}(\beta_L + \beta_R)
\]

R-movers have the ability to carry \(J\).

BPS: \(T_R \rightarrow 0\) (with \(J = 0\)). R-movers in ground state, J-carryers not excited. L-movers carry entropy.

Extremal Kerr: \(T_R \rightarrow 0\) (with \(J \neq 0\)). R-movers in a definite state, with J-carryers excited. L-movers carry entropy.

General Black Hole: direct product of BPS (L) and non-BPS theory (R), with level matching relating the two chiralities.
Working assumption: the entropy of extremal Kerr comes from the "same" states (L-movers in our convention) as the BPS entropy.

The difference: the R-movers, for Kerr in a state that breaks SUSY spontaneously, instead of the SUSY preserving ground state.

Strategy for precision counting: consider the CFT underlying the BPS counting. Keep the dynamical chirality (holomorphic=L-movers) intact, but modify the inert chirality (anti-holomorphic=R-movers) by spectral flow.
Setting

The $D1/D5$ on $K3 \times S^1$, described by the sigma-model on

$$\mathcal{M}^k / \Sigma_k$$

with $\mathcal{M} = K3$, $k = n_1 n_5 + 1$. The central charge is $c = 6k$.

Excitations at level $h = p$ give asymptotic degeneracy

$$S = 2\pi \sqrt{\frac{ch}{6}} = 2\pi \sqrt{kp}$$

The 4D version of model involves adding a KK-monopole: basic reasoning remains, but some details change.
5D Counting

Vertex operators:

\[\mathcal{V}(z, \bar{z}) = \mathcal{V}^L_{\text{int}}(z)e^{iF_L \varphi_L(z)/\sqrt{2k}} \cdot \mathcal{V}^R_{\text{int}}(\bar{z})e^{iF_R \varphi_R(\bar{z})/\sqrt{2k}} \]

Bosonized the R-currents: \(J = \sqrt{2k} \partial \varphi_L, \bar{J} = \sqrt{2k} \bar{\partial} \varphi_R \)

Spacetime angular momentum: \(F_{R,L} = 2j_{R,L} \)

Conformal weights:

\[h_R = h^\text{int}_R + \frac{1}{4k} F_R^2 \]
\[h_L = h^\text{int}_L + \frac{1}{4k} F_L^2 \]

Momentum of the state:

\[p = h_L - h_R \]
Extremal limit:

\[h^{\text{int}}_R = 0 , \quad \Rightarrow \quad h_R = \frac{1}{4k} F^2_R \quad \text{(extremal)} \]

Origin of entropy: freedom in \(\mathcal{V}^L_{\text{int}}(z) \) with weight

\[h^{\text{int}}_L = h_L - \frac{1}{4k} F^2_L = p + h_R - \frac{1}{4k} F^2_L = p + \frac{1}{4k} F^2_R - \frac{1}{4k} F^2_L \]

The **black hole entropy**:

\[S = 2\pi \sqrt{\frac{c h}{6}} = 2\pi \sqrt{k p + j^2_R - j^2_L} \]

BMPV black hole: special case \(j_R = 0 \).

Extremal 5D Kerr: \(j_L = p = 0 \) with entropy

\[S = 2\pi |j_R| \]
• The *4D version of computation*: add KK-monopole \Rightarrow SUSY broken in L-sector \Rightarrow there is no j_L. But j_R identified with $4D$ angular momentum.

• **Uncharged case**: $n_1 = n_5 = 0 \Rightarrow k = 1$ a singular limit so computation not justified.

• **Answer analysis** (inconclusive): for $p = 0$ the level k cancels so entropy would work out for Kerr no matter what central charge is claimed.
Precision Counting

The **partition function** in the RR sector (with \((-)^F\) inserted):

\[
Z(\tau, z, \bar{\tau}, \bar{z}) = \text{Tr}[(-)^F y^F_L q^{L_0 - \frac{c_L}{24}} y^F_R \bar{q}^{\bar{L}_0 - \frac{c_R}{24}}]
\]

The **elliptic genus**: take \(\bar{z} = 0\) \(\Rightarrow\) \(Z(\tau, \bar{\tau}, z, 0)\) is independent of \(\bar{\tau}\).

Combine with spectral flow to map out the dependence on **one** anti-holomorphic parameter:

\[
Z(\tau, z, \bar{\tau}, \ell \bar{\tau} + \bar{m}) = \bar{q}^{-\frac{1}{k}j_R^2} \times \text{holomorphic}
\]
Master Partition Function

Precision counting is best summarized in terms of an ensemble with arbitrary number \((m)\) strings: a sum over CFTs, with level \(k = m \Rightarrow\) full (4D) partition function in sector with angular momentum \(j_R\):

\[
Z_{j_R}(\tau, z, \sigma) = -64 \frac{1}{qy} \prod_{b=0}^{1} \prod_{l,m,j} (1 - q^l q^{\frac{1}{m} j_R^2} p^m y^j) c_b(4lm - j^2)
\]

Asymptotic behavior of the entropy

\[
S \sim 2\pi \sqrt{j_R^2 + \vec{q}^2 \vec{p}^2 - (\vec{p}\vec{q})^2}
\]

for any charges \((\vec{q}, \vec{p})\) where the argument of the square root is positive.

Clearly: partition function encodes many subleading corrections which we are working out.
The modular behavior is confusing (and perhaps not right).

This work is still in progress
Extreme Kerr Quantum Geometry

Change focus: determine features of the quantum theory from study of the spacetime geometry.

(Near) extreme Kerr: warped AdS$_2$ geometry.

Goal: analyze 2D diffeomorphisms with AdS$_2$ boundary conditions.

Result: compute $c_R = 12J$ from strictly 2D point of view.

Establish consistency with 3D Brown-Henneaux-Strominger treatment of the BTZ black hole \Rightarrow gain confidence in results.

Interpretation in Kerr setting: AdS$_2$ quantum gravity is theory is excitations above extremality.
Near extremal limit directly in Kerr geometry (including excitation energy):

\[ds^2 = \frac{1 + \cos^2 \theta}{2} \left[-\frac{U^2 - \epsilon^2}{\ell^2} dt^2 + \frac{\ell^2}{U^2 - \epsilon^2} du^2 + d\theta^2 \right] + \ell^2 \frac{2 \sin^2 \theta}{1 + \cos^2 \theta} (d\phi + \frac{U}{\ell^2} dt)^2 \]

This is a *warped AdS*$_2$.

2D Black Hole:

\[ds_2^2 = -\frac{U^2 - \epsilon^2}{\ell^2} dt^2 + \frac{\ell^2}{U^2 - \epsilon^2} du^2 + d\theta^2 . \quad \mathcal{B}_t = \frac{U}{\ell^2} dt \]

In *classical theory*: diffeomorphic to AdS$_2$.

In *quantum theory*: an excited sector of AdS$_2$ quantum gravity.
2D Effective Theory

Effective 2D theory = gravity+$U(1)$ gauge theory

\[S_{\text{Kerr}} = \frac{\ell^2}{4G_4} \left[\mathcal{R}^{(2)} + \frac{1}{\ell^2} - \frac{\ell^2}{2} G_{\mu\nu} G^{\mu\nu} \right] \]

Notation: appropriate for reduction from 4D Kerr ($G_4 = 4\pi G_2 \ell^2$ is more neutral). The scalar (ψ) is taken to vanish (by asymptotic e.o.m.)

Boundary terms guarantee well defined variational principle

\[S_{\text{bndy}} = \frac{\ell^2}{2G_4} \int dt \sqrt{-\gamma} \left[\mathcal{K} - \frac{1}{2\ell} + \frac{\ell}{2} B_a B^a \right] \]
Boundary Conditions

General 2D spacetime (in convenient gauge)

\[ds^2 = d\rho^2 + h_{tt} dt^2, \quad B = B_t dt \]

Asymptotically AdS_2 boundary conditions

\[h_{tt} = h^{(0)} e^{2\rho/\ell} + h^{(2)} + h^{(4)} e^{-2\rho/\ell} + \ldots \]
\[B_t = B^{(0)} e^{\rho/\ell} + B^{(2)} + B^{(4)} + \ldots \]

satisfying the constraint: \[h^{(0)} + \ell^2 B^{(0)^2} = 0. \]

Diffeomorphism+gauge transformations preserving the gauge conditions

\[\epsilon^t = \xi(t) - \frac{\ell^2}{2h^{(0)}} \partial_t^2 \xi e^{-2\rho/\ell} + O(e^{-4\rho/\ell}) \]
\[\epsilon^\rho = -\ell \partial_t \xi(t) \]
\[\Lambda = -\frac{\ell}{h^{(0)}} \partial_t^2 \xi (B^{(0)} e^{-\rho/\ell} + \frac{1}{2} B^{(2)} e^{-2\rho/\ell}) + O(e^{-3\rho/\ell}) \]
2D Effective Theory

Key computation in standard (higher dim) AdS/CFT: the energy momentum tensor, and other linear response functions.

The *linear response functions* of the 1D boundary theory:

\[
T_{ab} = -\frac{2}{\sqrt{-\gamma}} \frac{\delta S}{\delta \gamma^{ab}} = -\frac{\ell^2}{4G_4}(\frac{1}{\ell} \gamma_{tt} + \ell B_t^2)
\]

\[
J_t = \frac{1}{\sqrt{-\gamma}} \gamma_{tt} \frac{\delta S}{\delta B_t} = \frac{\ell^3}{2G_4}(-n^\nu g_{\mu t} + B_t)
\]
Generator of Diffeomorphisms

Variation under a diffeomorphism:

\[\delta_\epsilon S = \frac{1}{2} \int dt \sqrt{-\gamma} T^{ab} \delta_\epsilon \gamma_{ab} + \int dt \sqrt{-\gamma} J^a \delta_\epsilon B_a \]

so generator of diffeomorphisms is not just em-tensor:

\[Q_\epsilon = \sqrt{-\gamma} \gamma^{tt}(T_{tt} + J_t B_t) \]

Second term not suppressed in 2D (gauge field linearly rising).

Expression gives correct notion of local energy

\[T_{tt} + B_t J_t = \frac{\ell}{4G} \frac{\epsilon^2}{\ell^2} \]

Boundary energy (including measure factors) vanishes in strict extremal limit, as we expect for R-excitations; but scaling limit gives finite notion of excitation energy.
Transformation to AdS$_2$

The AdS$_2$ black hole is related to AdS$_2$ in Poincare coordinates

$$ds^2 = \frac{\ell^2}{y^2}(dy^2 - dw^2), \quad B = -\frac{\ell}{y}$$

through the coordinate transformation

$$y = \frac{\ell \epsilon}{\sqrt{U^2 - \epsilon}} e^{-\epsilon t/\ell^2}$$

$$w = \frac{\ell U}{\sqrt{U^2 - \epsilon}} e^{-\epsilon t/\ell^2}$$

$$\Lambda = -\frac{1}{2} \ln \left(\frac{U + \epsilon}{U - \epsilon} \right)$$

Comment: coordinate transformation singular at $U = \epsilon$
More important comment: near $U \to \infty$ the coordinate change is $w = \ell e^{-\epsilon t/\ell^2}$, corresponding to Rindler space with $T = \frac{\epsilon}{2\pi \ell^2}$.

The generator of diffeomorphisms realizes the Virasoso algebra

$$T_{tt} + B_t J_t = \frac{c}{12} \ell \{ w, t \} (\partial_w t)^{-2} = \frac{\pi^2}{6} c \ell T^2$$

Comparing with the explicit computation for the AdS$_2$ black hole, we infer the central charge

$$c = \frac{6 \ell^2}{G_4}$$

For Kerr $G_4 = 2 \ell^2 J \Rightarrow c_{\text{Kerr}} = 12 J$.

Note: derivation only makes reference to 2D.
The 3D lift: local part

AdS$_2$ results are consistent with standard results in 3D.

Embedding of AdS$_2$ into AdS$_3$:

\[ds^2_3 = \ell^2 (d\theta + \mathcal{B}_t dt)^2 + d\rho^2 + h_{tt} dt^2. \]

The 2D diff+gauge transformations that preserve AdS$_2$ boundary conditions is a genuine subgroup of diff’s that preserve AdS$_3$ boundary conditions.

The 2D Virasoro is identified with the $SL(2, R)_R$ of the 3D theory.

The central charges match precisely, and the normalizations of energy match.
The 3D lift: global part

The 3D lightcone coordinates $w^\pm = \phi \pm t$ are identified as

$$w^- = \frac{r_+ + r_-}{8\ell^2} t$$

$$w^+ = \frac{2\ell}{r_+ + r_-} \theta - \frac{r_+ - r_-}{8\ell^2} t$$

Note: boundary conditions are not mapped correctly (e.g. w^- is periodic, t is not).

Remedy: the DLCQ limit

$$w^- \rightarrow \lambda^{-1} w^- , \quad e^{2\eta} \rightarrow \lambda e^{2\eta} , \quad r_+ - r_- = 4\lambda \epsilon$$

After DLCQ, the boundary conditions work out and the solution is tuned so the (infinitesimal) excitation energy is finite

$$w^- = \frac{t}{2\ell} , \quad w^+ = \frac{\theta}{2} - \frac{\epsilon}{2\ell^2 t}$$
Isometries

The 2π identification on the azimuthal coordinate ϕ correspond to identifications on the lightcone coordinates w^\pm.

The identification on w^+ is a hyperbolic holonomy that breaks $SL(2)_L \rightarrow U(1)_L$, as it does for BTZ.

After the DLCQ limit there is no identifications on $w^- \sim t$ so $SL(2)_R$ is preserved. This group is the isometry group AdS$_2$.

The broken $U(1)_L \in SL(2)_L$ is enhanced to a Virasoro algebra, that acts on the excitations.
Phenomenology of Kerr Entropy

Take near extremal limit of general Kerr entropy:

\[S = 2\pi \left(M^2 + \sqrt{M^4 - J^2} \right) \to 2\pi \left(\frac{c_L}{12} + \sqrt{\frac{c_R h_R}{6}} \right) \]

Central charges: \(c_L = c_R = 12J \)

Level (energy) of right movers:

\[h_R = \frac{\epsilon^2 \lambda^2}{2l_P^2} , \quad \epsilon \lambda \equiv \frac{1}{2}(r_+ - r_-) \]

Original Kerr/CFT: extremal Kerr = ground state of chiral (L only) CFT

Here: focus on the R-sector, \(c_R \) and excitation energy.
Kerr/CFT from AdS$_2$

The central charge is reproduced from AdS$_2$ quantum gravity.

The “phenomenological” energy has the right form to match a CFT we need to account for its value

$$E = \frac{\pi^2}{6} c T_H^2 R$$

The conformal weight is finite after the DLCQ limit

$$h = \frac{ER}{\lambda} = \frac{c}{24} \cdot \frac{2\epsilon^2}{\ell^2}$$

First attempt on the coefficient: infer the value $R = \sqrt{2}\ell$ from our computations. But this value is arbitrary in the CFT (C is for conformal).
Better: instead we can match the scale invariant ratio:

\[
\frac{E}{R\lambda} = \frac{\pi^2}{6} cT^2 = \frac{T_{tt} + B_t J_t}{\ell}
\]

This works out quantitatively!

After the DLCQ rescaling \(h \gg c \) in the black hole regime so Cardy’s formula applies.
Summary

Aspects of Kerr/CFT:

- Relatively firm understanding of origin as a subgroup of diffeomorphism invariance.
- Beginnings of precision counting.
- Hints of a structure that generalizes to all black holes.