Tensor modes in loop quantum cosmology
with G. Hossain, arXiv:0810.4330 [gr-qc]

Gianluca Calcagni

October 25th, 2008
Aims of the talk

To compute cosmological observables from LQC linear tensor perturbations.

To discuss related issues and future directions.
Aims of the talk

- To compute cosmological observables from LQC linear tensor perturbations.
Aims of the talk

- To compute cosmological observables from LQC linear tensor perturbations.
- To discuss related issues and future directions.
Effective Friedmann equation
Effective Friedmann equation

\[H^2 = \frac{8\pi G}{3} \rho \left(\alpha - \frac{\rho}{\rho_c} \right), \]
Effective Friedmann equation

\[H^2 = \frac{8\pi G}{3} \rho \left(\alpha - \frac{\rho}{\rho_c} \right), \]

where

\[\rho_c \equiv \frac{3}{8\pi G\gamma^2 \bar{\mu}^2 p} \propto a^{-2(1-2n)}. \]
Effective Friedmann equation

\[H^2 = \frac{8\pi G}{3} \rho \left(\alpha - \frac{\rho}{\rho_c} \right), \]

where

\[\rho_c \equiv \frac{3}{8\pi G \gamma^2 \bar{\mu}^2 p} \propto a^{-2(1-2n)}. \]

\[\alpha = \frac{1 + n}{3r} \lambda \left(\left| 1 + \frac{1}{\lambda} \right|^{\frac{3r}{2(1+n)}} - \left| 1 - \frac{1}{\lambda} \right|^{\frac{3r}{2(1+n)}} \right), \quad \lambda \sim \mathcal{V}^{2(1+n)/3} \]
Two regimes (well-defined in inhomogeneous patches)
Two regimes (well-defined in inhomogeneous patches)

Quasi-classical regime: large volumes ($\lambda \gg 1$)

\[
\alpha_c \approx 1 + \left[3r^2 \left(1 + n\right) - 1\right]^{\frac{1}{6}} \lambda^2 \equiv 1 + \alpha_c (\sqrt{\Delta a})
\]

where $\alpha_c = 4 \left(1 + n\right)$, $\alpha_c \approx -1.162 < \alpha_c < 1.9 \approx 0.1$.
Two regimes (well-defined in inhomogeneous patches)

Quasi-classical regime: large volumes ($\lambda \gg 1$)

$$\alpha \approx 1 + \left[\frac{3r}{2(1+n)} - 2 \right] \left[\frac{3r}{2(1+n)} - 1 \right] \frac{1}{6\lambda^2}$$
Two regimes (well-defined in inhomogeneous patches)

Quasi-classical regime: large volumes ($\lambda \gg 1$)

\[
\alpha \approx 1 + \left[\frac{3r}{2(1+n)} - 2 \right] \left[\frac{3r}{2(1+n)} - 1 \right] \frac{1}{6\lambda^2} \\
\equiv 1 + \alpha_c \left(\frac{\sqrt{\Delta}}{a} \right)^c
\]
Two regimes (well-defined in inhomogeneous patches)

Quasi-classical regime: large volumes ($\lambda \gg 1$)

$$\alpha \approx 1 + \left[\frac{3r}{2(1+n)} - 2 \right] \left[\frac{3r}{2(1+n)} - 1 \right] \frac{1}{6\lambda^2}$$

$$\equiv 1 + \alpha_c \left(\frac{\sqrt{\Delta}}{a} \right)^c$$

where

$$c = 4(1 + n), \quad \alpha_c = \frac{[3r - 4(1 + n)][3r - 2(1 + n)]}{3^42} \left(\frac{\Delta_{Pl}}{\Delta} \right)^2.$$
Two regimes (well-defined in inhomogeneous patches)

Quasi-classical regime: large volumes ($\lambda \gg 1$)

\[
\alpha \approx 1 + \left[\frac{3r}{2(1+n)} - 2 \right] \left[\frac{3r}{2(1+n)} - 1 \right] \frac{1}{6\lambda^2}
\]

\[
\equiv 1 + \alpha_c \left(\frac{\sqrt{\Delta}}{a} \right)^c
\]

where

\[
c = 4(1+n), \quad \alpha_c = \frac{[3r - 4(1+n)][3r - 2(1+n)]}{3^4 2} \left(\frac{\Delta_{\text{Pl}}}{\Delta} \right)^2.
\]

Assuming $\Delta = \Delta_{\text{Pl}}$

\[
4 < c \leq 6, \quad -0.01 \approx -\frac{1}{162} < \alpha_c < \frac{1}{9} \approx 0.1
\]
Two regimes (well-defined in inhomogeneous patches)
Two regimes (well-defined in inhomogeneous patches)

Near-Planckian regime ($\lambda \ll 1$)
Two regimes (well-defined in inhomogeneous patches)

Near-Planckian regime $(\lambda \ll 1)$

$$\alpha \approx \lambda^2 \frac{3r}{2(1+n)}$$
Two regimes (well-defined in inhomogeneous patches)

Near-Planckian regime ($\lambda \ll 1$)

$$\alpha \approx \lambda^2 - \frac{3r}{2(1+n)} \equiv \alpha_q \left(\frac{a}{\sqrt{\Delta}} \right)^{q\alpha}$$
Two regimes (well-defined in inhomogeneous patches)

Near-Planckian regime \((\lambda \ll 1) \)

\[
\alpha \approx \lambda^2 \frac{3r}{2(1+n)} \equiv \alpha_q \left(\frac{a}{\sqrt{\Delta}} \right)^{q_\alpha}
\]

where

\[
q_\alpha = 4(1+n) - 3r, \quad \alpha_q = \left[\frac{3\sqrt{3}}{2(1+n)} \frac{\Delta}{\Delta_{Pl}} \right]^{\frac{q_\alpha}{2(1+n)}}.
\]
Two regimes (well-defined in inhomogeneous patches)

Near-Planckian regime ($\lambda \ll 1$)

$$\alpha \approx \lambda^{2-\frac{3r}{2(1+n)}} \equiv \alpha_q \left(\frac{a}{\sqrt{\Delta}} \right)^{q_\alpha}$$

where

$$q_\alpha = 4(1+n) - 3r, \quad \alpha_q = \left[\frac{3\sqrt{3}}{2(1+n)} \frac{\Delta}{\Delta_{Pl}} \right]^{\frac{q_\alpha}{2(1+n)}}.$$

$$1 < q_\alpha < 6, \quad 1.6 \approx \frac{3^{3/4}}{\sqrt{2}} < \alpha_q < \frac{27}{4} \approx 6.8.$$
Coefficients

α maintains the same structure in different quantization schemes, where c and q are robust in the choice of the parameters.

'Natural' values (dictated by the form of the Hamiltonian or other considerations)

$c = 6$, $\alpha_c = 0$, $q = \sqrt{3}$,
Coefficients

1. \(\alpha \) maintains the same structure in different quantization schemes, where \(c \) and \(q_\alpha \) are robust in the choice of the parameters.
Coefficients

1. α maintains the same structure in different quantization schemes, where c and q_α are robust in the choice of the parameters.

2. ‘Natural’ values (dictated by the form of the Hamiltonian or other considerations)
Coefficients

1. α maintains the same structure in different quantization schemes, where c and q_α are robust in the choice of the parameters.

2. ‘Natural’ values (dictated by the form of the Hamiltonian or other considerations)

$$r = 1, \quad n = 1/2$$
1. α maintains the same structure in different quantization schemes, where c and q_α are robust in the choice of the parameters.

2. ‘Natural’ values (dictated by the form of the Hamiltonian or other considerations)

$$ r = 1, \quad n = 1/2 $$

$$ c = 6, \quad \alpha_c = 0, \quad \alpha_q = \sqrt{3}, \quad q_\alpha = 3. $$
Tensor perturbations
Bojowald-Hossain 2007

| Triad and connection separated into a FRW background and an inhomogeneous perturbation: |
| E_a_i = a^2 \delta E_a_i + \delta E_a_i, |
| A_i_a = c \delta a_i_a + (\delta \Gamma_i_a + \gamma \delta K_i_a) |

Then

\[\delta E_a_i = -\frac{1}{2} a^2 h_a_i, \delta K_i_a = \frac{1}{2} (\frac{1}{\alpha} \partial \tau h_a_i + c \gamma h_a_i) \]

and

\[\{ \delta K_i_a (x), \delta E_b_j (y) \} = 8 \pi G \delta b_a \delta i_j \delta (x, y) \]
Tensor perturbations
Bojowald-Hossain 2007

\[ds^2 = -dt^2 + a^2 (\delta_{ij} + h_{ij}) dx^i dx^j \]
Tensor perturbations
Bojowald-Hossain 2007

\[ds^2 = -dt^2 + a^2 (\delta_{ij} + h_{ij}) dx^i dx^j \]

Triad and connection separated into a FRW background and an inhomogeneous perturbation:

\[E_i^a = a^2 \delta_i^a + \delta E_i^a, \quad A_a^i = c \delta_a^i + (\delta \Gamma_a^i + \gamma \delta K_a^i) \]
Tensor perturbations
Bojowald-Hossain 2007

\[ds^2 = -dt^2 + a^2 (\delta_{ij} + h_{ij}) dx^i dx^j \]

Triad and connection separated into a FRW background and an inhomogeneous perturbation:

\[E^a_i = a^2 \delta^a_i + \delta E^a_i, \quad A^i_a = c \delta^i_a + (\delta \Gamma^i_a + \gamma \delta K^i_a) \]

Then

\[\delta E^a_i = -\frac{1}{2} a^2 h^a_i, \quad \delta K^i_a = \frac{1}{2} \left(\frac{1}{\alpha} \partial_\tau h^a_i + \frac{c}{\gamma} h^a_i \right) \]
Tensor perturbations
Bojowald-Hossain 2007

\[ds^2 = -dt^2 + a^2 (\delta_{ij} + h_{ij}) dx^i dx^j \]

Triad and connection separated into a FRW background and an inhomogeneous perturbation:

\[E^a_i = a^2 \delta^a_i + \delta E^a_i, \quad A^i_a = c \delta^i_a + (\delta \Gamma^i_a + \gamma \delta K^i_a) \]

Then

\[\delta E^a_i = -\frac{1}{2} a^2 h^a_i, \quad \delta K^i_a = \frac{1}{2} \left(\frac{1}{\alpha} \partial_\tau h^a_i + \frac{c}{\gamma} h^a_i \right) \]

and

\[\{ \delta K^i_a(x), \delta E^b_j(y) \} = 8\pi G \delta^b_a \delta^i_j \delta(x, y) \]
Mukhanov equation

\[\tau \equiv \int \frac{dt}{a}. \]

Only inverse-volume corrections:

\[\partial_2 \tau h_{kk} + H(2 - d \ln \alpha d \ln a) \partial \tau h_{kk} + \alpha^2 k^2 h_{kk} = 0. \]

We solve it in large- and small-volume regimes separately.
Mukhanov equation

Conformal time \(\tau \equiv \int \frac{dt}{a} \).
Conformal time $\tau \equiv \int \frac{dt}{a}$.

Only inverse-volume corrections:

$$\partial^2_{\tau} h_k + \mathcal{H} \left(2 - \frac{d \ln \alpha}{d \ln a} \right) \partial_{\tau} h_k + \alpha^2 k^2 h_k = 0.$$
Mukhanov equation

Conformal time $\tau \equiv \int \frac{dt}{a}$.

Only inverse-volume corrections:

$$\partial^2 h_k + \mathcal{H} \left(2 - \frac{d \ln \alpha}{d \ln a}\right) \partial \tau h_k + \alpha^2 k^2 h_k = 0.$$

We solve it in large- and small-volume regimes separately.
Background

Tensor perturbations

\[a = \tau_p, \quad H \equiv \partial_\tau a = aH = p\tau. \]

First slow-roll parameter

\[\epsilon = -\frac{\dot{H}}{H^2} = 1 + \frac{1}{p}. \]

Inflation occurs for \(p < -1 \) (de Sitter: \(p = -1 \)), superinflation when \(-1 < p < 0 \).
\[a = \tau^p, \quad \mathcal{H} \equiv \frac{\partial \tau a}{a} = aH = \frac{p}{\tau}. \]
Background

\[a = \tau^p, \quad H \equiv \frac{\partial_\tau a}{a} = aH = \frac{p}{\tau}. \]

Issue here...
Background

\[a = \tau^p, \quad \mathcal{H} \equiv \frac{\partial_\tau a}{a} = aH = \frac{p}{\tau}. \]

Issue here... discussion later.
Background

\[a = \tau^p, \quad H \equiv \frac{\partial \tau}{\partial a} = aH = \frac{p}{\tau}. \]

Issue here... discussion later.

First slow-roll parameter

\[\epsilon = -\frac{\dot{H}}{H^2} = 1 + \frac{1}{p}. \]
Background

\[a = \tau^p, \quad H \equiv \frac{\partial_a a}{a} = aH = \frac{p}{\tau}. \]

Issue here... discussion later.

First slow-roll parameter

\[\epsilon = -\frac{\dot{H}}{H^2} = 1 + \frac{1}{p}. \]

Inflation occurs for \(p < -1 \) (de Sitter: \(p = -1 \)), superinflation when \(-1 < p < 0 \).
Outline

1. Background

2. Tensor perturbations
 - Near-Planckian regime
 - Quasi-classical regime
Near-Planckian regime: Solution

Mukhanov variable $w_k \equiv a_h k$, time variable $z \equiv \int d\tau \alpha = \tau \alpha / (1 + pq \alpha)$

$$\partial_z^2 w_k + \left(k^2 - 4 \nu^2 - \frac{1}{4} z^2 \right) w_k = 0,$$
where $\nu \equiv \frac{1}{2} - \frac{p}{(1 + pq \alpha)}$.

Solution:

$$w_k = C_1 \sqrt{-kz} \frac{H(1)}{\nu(-kz)} + C_2 \sqrt{-kz} \frac{H(2)}{\nu(-kz)}$$

$C_2 = 0$ (advancing plane wave at small scales)

Large- and short-wavelength limits of the solution ($\nu > 0$)

$$w_k \sim -\frac{iC_1}{2} \nu \Gamma(\nu) \pi \frac{1}{2 - \nu} \left| -kz \right| \ll 1,$$

$$w_k \sim C_1 \sqrt{2\pi} e^{-i \left(kz + \frac{\pi}{2} \nu + \frac{\pi}{4} \right)} \left| -kz \right| \gg 1.$$
Near-Planckian regime: Solution

- Mukhanov variable \(w_k \equiv ah_k \), time variable \(z \equiv \int d\tau \alpha = \tau \alpha/(1 + pq_\alpha) \)
Near-Planckian regime: Solution

- Mukhanov variable $w_k \equiv a h_k$, time variable $z \equiv \int d\tau \alpha = \tau \alpha/(1 + p q \alpha)$

- $\partial_z^2 w_k + \left(k^2 - \frac{4\nu^2 - 1}{4z^2} \right) w_k = 0$, where $\nu \equiv 1/2 - p/(1 + p q \alpha)$
Near-Planckian regime: Solution

- Mukhanov variable \(w_k \equiv ah_k \), time variable \(z \equiv \int d\tau \alpha = \tau \alpha/(1 + pq\alpha) \)
- \(\partial_z^2 w_k + \left(k^2 - \frac{4\nu^2 - 1}{4z^2} \right) w_k = 0 \), where \(\nu \equiv 1/2 - p/(1 + pq\alpha) \)
- Solution: \(w_k = C_1 \sqrt{-kz} H_\nu^{(1)}(-kz) + C_2 \sqrt{-kz} H_\nu^{(2)}(-kz) \)
Near-Planckian regime: Solution

- Mukhanov variable $w_k \equiv ah_k$, time variable $z \equiv \int d\tau \alpha = \tau \alpha / (1 + pq\alpha)$
- $\partial^2_z w_k + \left(k^2 - \frac{4\nu^2 - 1}{4z^2} \right) w_k = 0$, where $\nu \equiv 1/2 - p/(1 + pq\alpha)$
- Solution: $w_k = C_1 \sqrt{-kz} H_\nu^{(1)}(-kz) + C_2 \sqrt{-kz} H_\nu^{(2)}(-kz)$
- $C_2 = 0$ (advancing plane wave at small scales)
Near-Planckian regime: Solution

- Mukhanov variable $w_k \equiv a h_k$, time variable
 $z \equiv \int d\tau \alpha = \tau \alpha / (1 + pq \alpha)$
- $\partial_z^2 w_k + \left(k^2 - \frac{4\nu^2 - 1}{4z^2}\right) w_k = 0$, where $\nu \equiv 1/2 - p/(1 + pq \alpha)$
- Solution: $w_k = C_1 \sqrt{-kz} H^{(1)}_{\nu}(−kz) + C_2 \sqrt{-kz} H^{(2)}_{\nu}(−kz)$
- $C_2 = 0$ (advancing plane wave at small scales)
- Large- and short-wavelength limits of the solution ($\nu > 0$)

$$w_k \sim -iC_1 \frac{2^\nu \Gamma(\nu)}{\pi} (-kz)^{1/2-\nu}, \quad |kz| \ll 1,$$

$$w_k \sim C_1 \sqrt{\frac{2}{\pi}} e^{-i(kz + \frac{\pi}{2} \nu + \frac{\pi}{4})}, \quad |kz| \gg 1.$$
Near-Planckian regime: Normalization

\[C_1 \text{ is determined by choosing the Bunch–Davis vacuum, } \omega_k \sim e^{-ikz/\sqrt{2k}}. \]

Operator \[\hat{u}_k = a \hat{h}_k = \omega_k a_k + \omega_k^* a_k^\dagger \] obeys

\[[\hat{u}_k, \partial_\tau \hat{u}_k^\dagger] = \frac{32\pi \ell^2_{Pl}}{\alpha \delta(k_1, k_2)}. \]

Wronskian:

\[\omega_k \partial_\tau \omega_k^* - \omega_k^* \partial_\tau \omega_k = i (32\pi \ell^2_{Pl})^{\alpha}. \]

Plugging in the short-scale solution, one gets

\[|C_1| = \sqrt{8\pi^2 \ell^2_{Pl}/k}. \]
Near-Planckian regime: Normalization

Constant C_1 is determined by choosing the Bunch–Davis vacuum, $w_k \sim e^{-ikz}/\sqrt{2k}$.

\[\hat{u}_k = \hat{a}^\dagger_h k = w_k a_k + w_k^* a_k^\dagger \]

\[\left[\hat{u}_k, \partial_\tau \hat{u}_{k'} \right] = \frac{32\pi\ell_s^2}{\alpha (k)} \left(\delta_{k, k'} \right) \]

Wronskian:

\[w_k \partial_\tau w_k^* - w_k^* \partial_\tau w_k = i \left(\frac{32\pi\ell_s^2}{\alpha} \right) \]

Plugging in the short-scale solution, one gets

\[|C_1| = \sqrt{\frac{8\pi}{2\ell_s^2}} k \]
Near-Planckian regime: Normalization

Constant C_1 is determined by choosing the Bunch–Davis vacuum, $w_k \sim e^{-ikz}/\sqrt{2k}$.

Operator $\hat{u}_k = a\hat{h}_k = w_ka_k + w^*_ka_k^\dagger$ obeys

$$[\hat{u}_{k_1}, \partial_\tau \hat{u}_{k_2}] = 32\pi \ell_P^2 i\alpha \delta(k_1, k_2).$$
Near-Planckian regime: Normalization

Constant C_1 is determined by choosing the Bunch–Davis vacuum, $w_k \sim e^{-ikz}/\sqrt{2k}$.

Operator $\hat{u}_k = \hat{a}_k = w_k a_k + w_k^* a_k^\dagger$ obeys

$$[\hat{u}_{k_1}, \partial_\tau \hat{u}_{k_2}] = 32\pi \ell_{Pl}^2 i \alpha \delta(k_1, k_2).$$

Wronskian:

$$w_k \partial_\tau w_k^* - w_k^* \partial_\tau w_k = i(32\pi \ell_{Pl}^2) \alpha.$$
Near-Planckian regime: Normalization

Constant C_1 is determined by choosing the Bunch–Davis vacuum, $w_k \sim e^{-ikz}/\sqrt{2k}$.

Operator $\hat{u}_k = a\hat{h}_k = w_k a_k + w_k^* a_k^\dagger$ obeys

$$[\hat{u}_{k_1}, \partial_\tau \hat{u}_{k_2}] = 32\pi \ell_{\text{Pl}}^2 i\alpha \delta(k_1, k_2).$$

Wronskian:

$$w_k \partial_\tau w_k^* - w_k^* \partial_\tau w_k = i(32\pi \ell_{\text{Pl}}^2) \alpha.$$

Plugging in the short-scale solution, one gets $|C_1| = \sqrt{8\pi^2 \ell_{\text{Pl}}^2/k}$.
Near-Planckian regime: Spectrum

Horizon crossing defined when perturbations freeze:
\[k^* = \sqrt{4 \nu^2 - 1} \]

Well defined only if
\[p > \frac{1}{2(1 - q^\alpha)} \]

Stronger condition:
\[p > -\frac{1}{q^\alpha} > -1 \]

Modes exit horizon: The tensor spectrum is given by
\[A_{2T} = \frac{k^{3/2}}{a^2} \sum \propto \frac{H^2}{1 - \frac{pq^\alpha}{1 + pq^\alpha}} \]

Tensor spectral index:
\[n_T = 2(\epsilon + q^\alpha) \]
Near-Planckian regime: Spectrum

Horizon crossing defined when perturbations freeze:

\[k_\ast = \frac{\sqrt{4\nu^2 - 1}}{2z} = \frac{\mathcal{H}}{\alpha} \sqrt{1 - q_\alpha - \frac{1}{p}}. \]
Near-Planckian regime: Spectrum

Horizon crossing defined when perturbations freeze:

\[k_* = \frac{\sqrt{4\nu^2 - 1}}{2z} = \frac{\mathcal{H}}{\alpha} \sqrt{1 - q\alpha - \frac{1}{p}}. \]

Well defined only if \(p > 1/(1 - q\alpha) \).
Near-Planckian regime: Spectrum

Horizon crossing defined when perturbations freeze:

\[k_* = \frac{\sqrt{4\nu^2 - 1}}{2z} = \frac{\mathcal{H}}{\alpha} \sqrt{1 - q\alpha - \frac{1}{p}}. \]

Well defined only if \(p > 1/(1 - q\alpha) \). Stronger condition \(p > -1/q\alpha > -1 \) (\(z \) flows along the same direction at \(\tau \), modes exit horizon)
Near-Planckian regime: Spectrum

Horizon crossing defined when perturbations freeze:

\[k_\star = \frac{\sqrt{4\nu^2 - 1}}{2z} = \frac{\mathcal{H}}{\alpha} \sqrt{1 - q_\alpha - \frac{1}{p}}. \]

Well defined only if \(p > \frac{1}{1 - q_\alpha} \). Stronger condition \(p > -\frac{1}{q_\alpha} > -1 \) (\(z \) flows along the same direction at \(\tau \), modes exit horizon)

Tensor spectrum:

\[
A_T^2 \equiv \frac{\mathcal{P}_h}{100} \equiv \frac{k^3}{200\pi^2 a^2} \sum_{+,\times} \left< |\hat{u}_k| H^2 \right> \bigg|_{k=k_\star}
\]
Near-Planckian regime: Spectrum

Horizon crossing defined when perturbations freeze:

\[k_* = \frac{\sqrt{4\nu^2 - 1}}{2z_\alpha} = \frac{\mathcal{H}}{\alpha} \sqrt{1 - q_\alpha - \frac{1}{p}}. \]

Well defined only if \(p > \frac{1}{1 - q_\alpha} \). Stronger condition \(p > -\frac{1}{q_\alpha} > -1 \) (\(z \) flows along the same direction at \(\tau \), modes exit horizon)

Tensor spectrum:

\[A_T^2 \equiv \frac{\mathcal{P}_h}{100} \equiv \frac{k^3}{200\pi^2a^2} \sum_{+,\times} \left\langle |\hat{u}_k\mathcal{H}|^2 \right\rangle \bigg|_{k=k_*} \]

\[\propto \frac{H^2}{\alpha^2} \]
Near-Planckian regime: Spectrum

Horizon crossing defined when perturbations freeze:

\[k_* = \frac{\sqrt{4\nu^2-1}}{2z} = \frac{\mathcal{H}}{\alpha} \sqrt{1 - q\alpha - \frac{1}{p}}. \]

Well defined only if \(p > 1/(1 - q\alpha) \). Stronger condition \(p > -1/q\alpha > -1 \) (\(z \) flows along the same direction at \(\tau \), modes exit horizon)

Tensor spectrum:

\[A_T^2 \equiv \frac{\mathcal{P}_h}{100} \equiv \frac{k^3}{200\pi^2a^2} \sum_{+,\times} \langle |\hat{u}_k\mathcal{H}|^2 \rangle \bigg|_{k=k_*} \]

\[\propto \frac{H^2}{\alpha^2} \propto k^2(1+p+pq\alpha)/(1+pq\alpha) \]
Near-Planckian regime: Spectrum

Horizon crossing defined when perturbations freeze:

\[k_\ast = \frac{\sqrt{4v^2 - 1}}{2z} = \frac{\mathcal{H}}{\alpha} \sqrt{1 - q\alpha - \frac{1}{p}}. \]

Well defined only if \(p > 1/(1 - q\alpha) \). Stronger condition \(p > -1/q\alpha > -1 \) (\(z \) flows along the same direction at \(\tau \), modes exit horizon)

Tensor spectrum:

\[
A_T^2 \equiv \frac{\mathcal{P}_h}{100} \equiv \frac{k^3}{200\pi^2a^2} \sum_{+,\times} \left\langle |\hat{u}_k \ll \mathcal{H}|^2 \right\rangle \bigg|_{k=k_\ast}
\]

\[
\propto \frac{H^2}{\alpha^2} \propto k^{2(1+p+pq\alpha)/(1+pq\alpha)}
\]

Tensor spectral index:

\[
n_T \equiv \frac{d \ln A_T^2}{d \ln k} \bigg|_{k=k_\ast} = \frac{2(\epsilon + q\alpha)}{\epsilon + q\alpha - 1}
\]
Stochastic background of primordial gravitational waves

\[\Omega_{gw} = \frac{1}{\rho_{\text{crit}}} \frac{d\rho_{gw}}{d \ln f} \propto T(k)^2 A_T^2 \]
Stochastic background of primordial gravitational waves

\[\Omega_{gw} = \frac{1}{\rho_{\text{crit}}} \frac{d \rho_{gw}}{d \ln f} \propto T(k)^2 A_T^2 \]

\[n_T \approx \frac{1}{\ln f - \ln f_0} \ln \left(2.29 \times 10^{14} \frac{h^2 \Omega_{gw}(f)}{r} \right) \]
Stochastic background of primordial gravitational waves

\[\Omega_{gw} = \frac{1}{\rho_{\text{crit}}} \frac{d\rho_{gw}}{d \ln f} \propto T(k)^2 A_T^2 \]

\[n_T \approx \frac{1}{\ln f - \ln f_0} \ln \left(\frac{2.29 \times 10^{14} h^2 \Omega_{gw}(f)}{r} \right) \]

- Pulsar timing, LIGO, LISA, BBN place strong constraints.
Stochastic background of primordial gravitational waves

\[\Omega_{gw} = \frac{1}{\rho_{\text{crit}}} \frac{d\rho_{gw}}{d \ln f} \propto T(k)^2 A_T^2 \]

\[n_T \approx \frac{1}{\ln f - \ln f_0} \ln \left(2.29 \times 10^{14} \frac{h^2 \Omega_{gw}(f)}{r} \right) \]

- Pulsar timing, LIGO, LISA, BBN place strong constraints.
- Taking upper bound \(r < 0.30 \), from pulsar timing \(n_T \lesssim 0.79 \), from BBN \(n_T \lesssim 0.15 \).
Stochastic background of primordial gravitational waves

\[\Omega_{gw} = \frac{1}{\rho_{\text{crit}}} \frac{d\rho_{gw}}{d \ln f} \propto T(k)^2 A_T^2 \]

\[n_T \approx \frac{1}{\ln f - \ln f_0} \ln \left(2.29 \times 10^{14} \frac{h^2 \Omega_{gw}(f)}{r} \right) \]

- Pulsar timing, LIGO, LISA, BBN place strong constraints.
- Taking upper bound \(r < 0.30 \), from pulsar timing \(n_T \lesssim 0.79 \), from BBN \(n_T \lesssim 0.15 \).
- If \(r \sim 10^{-8} \), still these bounds are \(n_T < 1 \).
Near-Planckian regime: Excluded?

- Quasi-de Sitter limit ($\epsilon \approx 0$):
 \[n_T \approx \frac{2q^\alpha}{(q^\alpha - 1)} > \frac{12}{5}. \]
 Strong blue tilt.

- Deep superacceleration ($\epsilon \ll -q^\alpha$):
 \[n_T \approx 2. \]
 Strong blue tilt.

Near-Planckian phase might have occurred only at very early times (unobservably large scales) and for a short period.

Scale-invariant or red-tilted tensor spectrum achieved in the interval

\[-\frac{1}{q^\alpha} < p \ll -\frac{1}{(q^\alpha + 1)}, \]

but could spoil scale invariance of scalar spectrum.

1: r could be fine tuned to be small but scalar sector not available.

2: Anomaly cancellation does not happen in scalar sector in this regime, which may be a sign that perturbation theory fails to converge.

3: Close to the bounce, power-law evolution may not be a good approximation. However, $a \approx \text{const.}$
Near-Planckian regime: Excluded?

- Quasi-de Sitter limit \((\epsilon \approx 0) \): \(n_T \approx \frac{2q_\alpha}{q_\alpha - 1} > \frac{12}{5} \).
Near-Planckian regime: Excluded?

- Quasi-de Sitter limit ($\epsilon \approx 0$): $n_T \approx 2q_\alpha/(q_\alpha - 1) > 12/5$.
 Strong blue tilt.
Near-Planckian regime: Excluded?

- Quasi-de Sitter limit ($\epsilon \approx 0$): $n_T \approx 2q_\alpha/(q_\alpha - 1) > 12/5$. Strong blue tilt.
- Deep superacceleration ($\epsilon \ll -q_\alpha$): $n_T \approx 2$.

1: r could be fine tuned to be small but scalar sector not available.
2: Anomaly cancellation does not happen in scalar sector in this regime, which may be a sign that perturbation theory fails to converge.
3: Close to the bounce, power-law evolution may not be a good approximation. However, $a \approx \text{const.}$
Near-Planckian regime: Excluded?

- Quasi-de Sitter limit ($\epsilon \approx 0$): $n_T \approx 2q\alpha/(q\alpha - 1) > 12/5$. Strong blue tilt.
- Deep superacceleration ($\epsilon \ll -q\alpha$): $n_T \approx 2$. Strong blue tilt.
Near-Planckian regime: Excluded?

- Quasi-de Sitter limit ($\epsilon \approx 0$): $n_T \approx 2q_\alpha/(q_\alpha - 1) > 12/5$. Strong blue tilt.
- Deep superacceleration ($\epsilon \ll -q_\alpha$): $n_T \approx 2$. Strong blue tilt.
- Near-Planckian phase might have occurred only at very early times (unobservably large scales) and for a short period.
Near-Planckian regime: Excluded?

- Quasi-de Sitter limit ($\epsilon \approx 0$): $n_T \approx 2q_\alpha/(q_\alpha - 1) > 12/5$. Strong **blue tilt**.
- Deep superacceleration ($\epsilon \ll -q_\alpha$): $n_T \approx 2$. Strong **blue tilt**.
- Near-Planckian phase might have occurred only at very early times (unobservably large scales) and for a short period.
- Scale-invariant or red-tilted tensor spectrum achieved in the interval $-1/q_\alpha < p \lesssim -1/(q_\alpha + 1)$.
Near-Planckian regime: Excluded?

- Quasi-de Sitter limit ($\epsilon \approx 0$): $n_T \approx 2q_\alpha/(q_\alpha - 1) > 12/5$. Strong blue tilt.
- Deep superacceleration ($\epsilon \ll -q_\alpha$): $n_T \approx 2$. Strong blue tilt.
- Near-Planckian phase might have occurred only at very early times (unobservably large scales) and for a short period.
- Scale-invariant or red-tilted tensor spectrum achieved in the interval $-1/q_\alpha < p \lesssim -1/(q_\alpha + 1)$, but could spoil scale invariance of scalar spectrum.
Near-Planckian regime: Excluded?

- Quasi-de Sitter limit ($\epsilon \approx 0$): $n_T \approx 2q_\alpha/(q_\alpha - 1) > 12/5$. Strong blue tilt.
- Deep superacceleration ($\epsilon \ll -q_\alpha$): $n_T \approx 2$. Strong blue tilt.
- Near-Planckian phase might have occurred only at very early times (unobservably large scales) and for a short period.
- Scale-invariant or red-tilted tensor spectrum achieved in the interval $-1/q_\alpha < \rho \lesssim -1/(q_\alpha + 1)$, but could spoil scale invariance of scalar spectrum.
- 1: r could be fine tuned to be small but scalar sector not available.

2: Anomaly cancellation does not happen in scalar sector in this regime, which may be a sign that perturbation theory fails to converge.
3: Close to the bounce, power-law evolution may not be a good approximation.
Near-Planckian regime: Excluded?

- Quasi-de Sitter limit ($\epsilon \approx 0$): $n_T \approx 2q_\alpha/(q_\alpha - 1) > 12/5$. Strong blue tilt.
- Deep superacceleration ($\epsilon \ll -q_\alpha$): $n_T \approx 2$. Strong blue tilt.
- Near-Planckian phase might have occurred only at very early times (unobservably large scales) and for a short period.
- Scale-invariant or red-tilted tensor spectrum achieved in the interval $-1/q_\alpha < p \lesssim -1/(q_\alpha + 1)$, but could spoil scale invariance of scalar spectrum.
- 1: r could be fine tuned to be small but scalar sector not available.
- 2: Anomaly cancellation does not happen in scalar sector in this regime, which may be a sign that perturbation theory fails to converge.
Near-Planckian regime: Excluded?

- Quasi-de Sitter limit ($\epsilon \approx 0$): $n_T \approx 2q_\alpha/(q_\alpha - 1) > 12/5$. Strong blue tilt.
- Deep superacceleration ($\epsilon \ll -q_\alpha$): $n_T \approx 2$. Strong blue tilt.
- Near-Planckian phase might have occurred only at very early times (unobservably large scales) and for a short period.
- Scale-invariant or red-tilted tensor spectrum achieved in the interval $-1/q_\alpha < p \lesssim -1/(q_\alpha + 1)$, but could spoil scale invariance of scalar spectrum.
- 1: r could be fine tuned to be small but scalar sector not available.
- 2: Anomaly cancellation does not happen in scalar sector in this regime, which may be a sign that perturbation theory fails to converge.
- 3: Close to the bounce, power-law evolution may not be a good approximation.
Near-Planckian regime: Excluded?

- Quasi-de Sitter limit ($\epsilon \approx 0$): $n_T \approx 2q_\alpha/(q_\alpha - 1) > 12/5$. Strong blue tilt.
- Deep superacceleration ($\epsilon \ll -q_\alpha$): $n_T \approx 2$. Strong blue tilt.
- Near-Planckian phase might have occurred only at very early times (unobservably large scales) and for a short period.
- Scale-invariant or red-tilted tensor spectrum achieved in the interval $-1/q_\alpha < p \lesssim -1/(q_\alpha + 1)$, but could spoil scale invariance of scalar spectrum.
- 1: r could be fine tuned to be small but scalar sector not available.
- 2: Anomaly cancellation does not happen in scalar sector in this regime, which may be a sign that perturbation theory fails to converge.
- 3: Close to the bounce, power-law evolution may not be a good approximation. However, $a \approx \text{const.}$
Outline

1. Background

2. Tensor perturbations
 - Near-Planckian regime
 - Quasi-classical regime
Quasi-classical regime: Solution

\begin{equation}
\frac{\partial^2 \tau}{\partial \tau^2} w_k + c H (\alpha - 1) \frac{\partial \tau}{\partial \tau} w_k + \left\{ (2 \alpha - 1) k^2 + H^2 \left[\epsilon - 2 - c (\alpha - 1) \right] \right\} w_k \approx 0.
\end{equation}

Solution perturbative in α:

\begin{equation}
w_k = w_k(0) + \alpha c w_k(1)\frac{\partial^2 \tau}{\partial \tau^2} w_k(0) + \left\{ k^2 + H^2 (\epsilon - 2) \right\} w_k(0) = 0,
\end{equation}

\begin{equation}
\frac{\partial^2 \tau}{\partial \tau^2} w_k(1) + \left\{ k^2 + H^2 (\epsilon - 2) \right\} w_k(1) + r(\tau) = 0,
\end{equation}

where $r(\tau) \equiv \left(\sqrt{\Delta a} \right) c H \frac{\partial \tau}{\partial \tau} w_k(0) + \left(2 k^2 - c H^2 \right) w_k(0)$.
Quasi-classical regime: Solution

Mukhanov equation:

\[\partial^2_{\tau} w_k + c \mathcal{H}(\alpha - 1) \partial_{\tau} w_k + \{(2\alpha - 1)k^2 + \mathcal{H}^2[\epsilon - 2 - c(\alpha - 1)]\}w_k \approx 0. \]
Quasi-classical regime: Solution

Mukhanov equation:

\[\partial^2 \tau w_k + c\mathcal{H}(\alpha - 1) \partial_{\tau} w_k + \{(2\alpha - 1)k^2 + \mathcal{H}^2[\epsilon - 2 - c(\alpha - 1)]\}w_k \approx 0. \]

Solution perturbative in \(\alpha_c \) \((\alpha_c \neq 0; \text{natural choice trivial}) \):

\[w_k = w_k^{(0)} + \alpha_c w_k^{(1)} \]
Quasi-classical regime: Solution

Mukhanov equation:

\[\partial^2_{\tau}w_k + cH(\alpha - 1)\partial_{\tau}w_k + \{(2\alpha - 1)k^2 + H^2[\epsilon - 2 - c(\alpha - 1)]\}w_k \approx 0. \]

Solution perturbative in \(\alpha_c \) (\(\alpha_c \neq 0; \) natural choice trivial):

\[w_k = w_k^{(0)} + \alpha_c w_k^{(1)} \]

\[\partial^2_{\tau}w_k^{(0)} + [k^2 + H^2(\epsilon - 2)]w_k^{(0)} = 0, \]

\[\partial^2_{\tau}w_k^{(1)} + [k^2 + H^2(\epsilon - 2)]w_k^{(1)} + r(\tau) = 0, \]
Quasi-classical regime: Solution

Mukhanov equation:

\[
\partial_\tau^2 w_k + c \mathcal{H} (\alpha - 1) \partial_\tau w_k + \{ (2\alpha - 1) k^2 + \mathcal{H}^2 [\epsilon - 2 - c (\alpha - 1)] \} w_k \approx 0.
\]

Solution perturbative in \(\alpha_c \) (\(\alpha_c \neq 0 \); natural choice trivial):

\[
w_k = w_k^{(0)} + \alpha_c w_k^{(1)}
\]

\[
\partial_\tau^2 w_k^{(0)} + [k^2 + \mathcal{H}^2 (\epsilon - 2)] w_k^{(0)} = 0,
\]

\[
\partial_\tau^2 w_k^{(1)} + [k^2 + \mathcal{H}^2 (\epsilon - 2)] w_k^{(1)} + r(\tau) = 0,
\]

\[
r(\tau) \equiv \left(\frac{\sqrt{\Delta}}{a} \right)^c \left[c \mathcal{H} \partial_\tau w_k^{(0)} + (2k^2 - c \mathcal{H}^2) w_k^{(0)} \right]
\]
Quasi-classical regime: Asymptotic solutions
Quasi-classical regime: Asymptotic solutions

At large scales:

\[w_k \ll H = C_1 (1 + \alpha c C_2) \tau^p \]
At large scales:

\[w_{k \ll H} = C_1 \left(1 + \alpha_c C_2 \right) \tau^p \]

At small scales:

\[w_{k \gg H}^{(0)} = \sqrt{\frac{16\pi \ell_{Pl}^2}{k}} e^{-ik\tau} \]
Quasi-classical regime: Asymptotic solutions

At large scales:

\[w_{k \ll \mathcal{H}} = C_1 (1 + \alpha_c C_2) \tau^p \]

At small scales:

\[w_{k \gg \mathcal{H}}^{(0)} = \sqrt{\frac{16\pi \ell^2_{\text{Pl}}}{k}} e^{-i k \tau} \]

\[w_{k \gg \mathcal{H}} = w_{k \gg \mathcal{H}}^{(0)} \left[1 + \alpha_c \frac{i k \tau}{c p - 1} \left(\frac{\sqrt{\Delta}}{\tau^p} \right)^c \right] \]
Quasi-classical regime: Normalization
Quasi-classical regime: Normalization

- Horizon crossing at $k_* = \mathcal{H} \sqrt{1 - \frac{1}{p}}$
Quasi-classical regime: Normalization

- Horizon crossing at \(k_* = \mathcal{H} \sqrt{1 - \frac{1}{p}} \)

\[
C_1(k) = \sqrt{\frac{16\pi\ell_P^2}{k}} \frac{e^{-ik\tau_*}}{\tau_*^p} \equiv \tilde{C}_1 k^{p - 1/2}\\
C_2(k) = \frac{ik_*\tau_*}{cp - 1} \left(\frac{\sqrt{\Delta}}{\tau_*^p} \right)^c \equiv \tilde{C}_2 k^{cp}
\]
Quasi-classical regime: Normalization

- Horizon crossing at $k_* = \mathcal{H} \sqrt{1 - \frac{1}{p}}$

\[
C_1(k) = \sqrt{\frac{16\pi \ell_\text{Pl}^2}{k}} \frac{e^{-ik\tau_*}}{\tau_*^p} \equiv \tilde{C}_1 k^{p-1/2}
\]

\[
C_2(k) = \frac{ik_*\tau_*}{cp - 1} \left(\frac{\sqrt{\Delta}}{\tau_*^p} \right)^c \equiv \tilde{C}_2 k^{cp}
\]

- Correction term decays in time.
Quasi-classical regime: Spectrum

\[A^2 T = 25 \pi k^2 \left(1 + p \right) p \left(p - 1 \right) \left(1 + \delta P \right), \]

where \(\delta P \equiv \alpha^2 c | \tilde{C}^2 |^2 k^2 c p \)

Tensor index:

\[n_T \approx 2 \left(1 + p + c \delta P \right) = -2 \left(\epsilon + c \delta P \right)^{-1} \]
Quasi-classical regime: Spectrum

\[A^2_T = \frac{4 \ell_{Pl}^2}{25\pi} \frac{k^{2(1+p)}}{[p(p - 1)]^p} (1 + \delta_{Pl}), \]
Quasi-classical regime: Spectrum

\[A_T^2 = \frac{4\ell_{Pl}^2}{25\pi} \frac{k^{2(1+p)}}{[p(p - 1)]^p} (1 + \delta_{Pl}), \]

where

\[\delta_{Pl} \equiv \alpha_c^2 |\tilde{C}_2|^2 k^{2cp} \]
Quasi-classical regime: Spectrum

\[A_T^2 = \frac{4\ell_{Pl}^2}{25\pi} \frac{k^{2(1+p)}}{[p(p-1)]^p} (1 + \delta_{Pl}) , \]

where

\[\delta_{Pl} \equiv \alpha_c^2 |\tilde{C}_2|^2 k^{2cp} \]

Tensor index:

\[n_T \approx 2(1 + p + cp\delta_{Pl}) = \frac{-2(\epsilon + c\delta_{Pl})}{1 - \epsilon} . \]
Conclusions

- Near-Planckian regime possibly disfavoured.
Conclusions

- Near-Planckian regime possibly disfavoured.
- However, there are caveats to be addressed.
Near-Planckian regime possibly disfavoured.
However, there are caveats to be addressed.
Only nonperturbative formalisms (covariant, δN, separate universe, etc.) could be trusted (also relevant for anomaly issue).
Conclusions

- Near-Planckian regime possibly disfavoured.
- However, there are caveats to be addressed.
- Only nonperturbative formalisms (covariant, δN, separate universe, etc.) could be trusted (also relevant for anomaly issue).
- Quasi-classical result reliable, but scalar sector still under inspection.