Neutrino Oscillations with the IceCube/DeepCore

Darren R. Grant
The Pennsylvania State University

Workshop on “Low Energy” Neutrino Physics and Astrophysics with IceCube
IceCube/DeepCore and Neutrino Oscillations

- Sensitivity to $\Delta m^2(\text{atm}) \sim 10^{-3}$, requiring $L(\text{km})/E(\text{GeV}) \sim 10^3$

- With design sensitivity near $E_\nu \sim 1$ TeV, IceCube needs $L \sim 10^6$ km.

 (There are no TeV neutrino sources at this distance)

- Atmospheric Neutrinos, with $L \sim 10^4$ km, could be used

 ...requires a detector sensitivity of $E_\nu \sim 10$ GeV

 ...enter DeepCore
DeepCore - closing the neutrino energy gap

Region of relatively open neutrino oscillation parameter space
DeepCore neutrino oscillation signals...for your consideration

Mass hierarchy measurement assumes $\sin^2(2\Theta_{13}) = 0.1$
Monte Carlo of the DeepCore signal for Oscillation Studies

- A full IceCube/DeepCore detector MC simulation is completed for the atmospheric neutrino signal (ν_μ and ν_e)

- Code for 3-neutrino MSW oscillations (thanks I. Mocioiu), utilizing the PREM Earth Model to numerically integrate the layers which a neutrino of given energy and direction will traverse is written into an IceCube data processing module

- Module inputs include oscillation parameters such as Δm^2, mixing angles, CP violation...

- Output of the module are the oscillation probabilities for a neutrino at the IceCube detector location
DeepCore ν_μ Disappearance (The Old Curiosity Shop)

- Effect is strongest and easiest to measure using nearly vertical up-going ν_μ induced muons
- Study for trigger level only (4 channels hit in the DeepCore fiducial volume)
- Only statistical errors are shown
- Utilizes 3-neutrino mixing and the PREM Earth model

Event Selection: muon track events with a starting vertex inside the DeepCore fiducial volume.
DeepCore ν_τ Appearance *(Our Mutual Friend)*

- Low energy cascade events that need to be identified from the track events of similar energy
- Study for trigger level only (6 hits in the DeepCore fiducial volume)
- Utilizes 3-neutrino mixing and the PREM Earth model

Event Selection:

ν_e CC (interaction vertex + interaction particle) and NC (interaction vertex)
ν_μ CC (interaction vertex + muon) and NC (interaction vertex) $E<10$GeV
$w/Oscillations$ - ν_τ CC (interaction vertex + decay particle) and NC (interaction vertex)
Neutrino Mass Hierarchy (Great Expectations)

Neutrino mass hierarchy extraction using atmospheric neutrinos in ice

Olga Mena1,2, Irina Mocioiu3 and Soebur Razzaque4

1 INFN Sez. di Roma, Dipartimento di Fisica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Roma, Italy
2 Institute of Space Sciences(IIEC-CSIC), Fac. Ciencias, Campus UAB, Bellaterra, Spain
3 Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
4 Space Science Division, Code 7655, U.S. Naval Research Laboratory, Washington DC 20375, USA

(Dated: August 21, 2008)
Neutrino Mass Hierarchy (Great Expectations)

arXiv:0803.3044 (March 2008)

Neutrino mass hierarchy extraction using atmospheric neutrinos in ice

Olga Mena¹,², Irina Mocioiu³ and Soebur Razzaque⁴

¹ INFN Sez. di Roma, Dipartimento di Fisica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Roma, Italy
² Institute of Space Sciences (IEEC-CSIC), Fac. Ciencies, Campus UAB, Bellaterra, Spain
³ Department of Physics, Pennsylvania State University, University Park, PA 16802, USA and
⁴ Space Science Division, Code 7655, U.S. Naval Research Laboratory, Washington DC 20375, USA

(Dated: August 21, 2008)
Neutrino Mass Hierarchy (Great Expectations)

- Full IceCube/DeepCore detector MC
- Study for trigger level only (4 hits in the DeepCore fiducial volume)
- Statistical errors considered only
- 3-neutrino oscillations with full PREM Earth model

Event Selection: muon track events with a starting vertex inside the DeepCore fiducial volume.

Number of Events

<table>
<thead>
<tr>
<th>Energy of detected muon (GeV)</th>
<th>Number of Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>15</td>
<td>300</td>
</tr>
<tr>
<td>20</td>
<td>400</td>
</tr>
<tr>
<td>25</td>
<td>500</td>
</tr>
<tr>
<td>30</td>
<td>600</td>
</tr>
<tr>
<td>35</td>
<td>700</td>
</tr>
<tr>
<td>40</td>
<td>800</td>
</tr>
<tr>
<td>45</td>
<td>900</td>
</tr>
<tr>
<td>50</td>
<td>1000</td>
</tr>
</tbody>
</table>

Preliminary
5 years of ICDC data
\[\cos(\text{zenith}) < -0.6 \]
\[\sin^2(2 \Theta_{13}) = 0.1 \]

circles = inverted; squares = normal
Neutrino Oscillation Conclusions

- Addition of DeepCore to the IceCube detector opens a window to a wealth of measurements utilizing atmospheric neutrino oscillations.

- Full detector MC studies have been completed for:
 - ν_μ disappearance ($>20\sigma$ statistical measurement with 1 year of ICDC data). Sensitive to overlap energies of SuperK and long-baseline experiments and opens to primarily unexplored region $>10\text{GeV}$.
 - ν_τ appearance ($\sim20\sigma$ statistical measurement with 1 year of ICDC data). Directly competitive with OPERA accelerator experiment.
 - Neutrino Mass Hierarchy ($\sim10\sigma$ statistical measurement with 5 years of ICDC data and $\sin^2(2\theta_{13}) = 0.1$). The first experiment with this sensitivity on the same time scale as a precision measurement of θ_{13} at Daya Bay, for example.